Your browser doesn't support javascript.
loading
Diversity of the Madden-Julian Oscillation.
Wang, Bin; Chen, Guosen; Liu, Fei.
Afiliação
  • Wang B; Earth System Modeling Center, Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • Chen G; Department of Atmospheric Sciences and Atmosphere-Ocean Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
  • Liu F; Earth System Modeling Center, Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China.
Sci Adv ; 5(7): eaax0220, 2019 Jul.
Article em En | MEDLINE | ID: mdl-31392274
ABSTRACT
Madden-Julian Oscillation (MJO) is the dominant mode of atmospheric intraseasonal variability and the cornerstone for subseasonal prediction of extreme weather events. Climate modeling and prediction of MJO remain a big challenge, partially due to lack of understanding the MJO diversity. Here, we delineate observed MJO diversity by cluster analysis of propagation patterns of MJO events, which reveals four archetypes standing, jumping, slow eastward propagation, and fast eastward propagation. Each type exhibits distinctive east-west asymmetric circulation and thermodynamic structures. Tight coupling between the Kelvin wave response and major convection is unique for the propagating events, while the strength and length of Kelvin wave response distinguish slow and fast propagations. The Pacific sea surface temperature anomalies can affect MJO diversity by modifying the Kelvin wave response and its coupling to MJO convection. The results shed light on the mechanisms responsible for MJO diversity and provide potential precursors for foreseeing MJO propagation.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Adv Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Adv Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China