Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram.
Comput Methods Programs Biomed
; 180: 105001, 2019 Oct.
Article
em En
| MEDLINE
| ID: mdl-31421606
BACKGROUND AND OBJECTIVE: This study demonstrates deep learning approaches with an aim to find the optimal method to automatically detect sleep apnea (SA) events from an electrocardiogram (ECG) signal. METHODS: Six deep learning approaches were designed and implemented for automatic detection of SA events including deep neural network (DNN), one-dimensional (1D) convolutional neural networks (CNN), two-dimensional (2D) CNN, recurrent neural networks (RNN), long short-term memory, and gated-recurrent unit (GRU). Designed deep learning models were analyzed and compared in the performances. The ECG signal was pre-processed, normalized, and segmented into 10â¯s intervals. Subsequently, the signal was converted into a 2D form for analysis in the 2D CNN model. A dataset collected from 86 patients with SA was used. The training set comprised data from 69 of the patients, while the test set contained data from the remaining 17 patients. RESULTS: The accuracy of the best-performing model was 99.0%, and the 1D CNN and GRU models had 99.0% recall rates. CONCLUSIONS: The designed deep learning approaches performed better than those developed and tested in previous studies in terms of detecting SA events, and they could distinguish between apnea and hypopnea events using an ECG signal. The deep learning approaches such as 1D CNN and GRU can be helpful tools to automatically detect SA in sleep apnea screening and related studies.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Síndromes da Apneia do Sono
/
Eletrocardiografia
/
Aprendizado Profundo
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Comput Methods Programs Biomed
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2019
Tipo de documento:
Article
País de publicação:
Irlanda