Your browser doesn't support javascript.
loading
Reductive dissolution of jarosite by a sulfate reducing bacterial community: Secondary mineralization and microflora development.
Gao, Kun; Jiang, Mengge; Guo, Chuling; Zeng, Yufei; Fan, Cong; Zhang, Junhui; Reinfelder, John R; Huang, Weilin; Lu, Guining; Dang, Zhi.
Afiliação
  • Gao K; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
  • Jiang M; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
  • Guo C; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China. Electronic address: clguo@scut
  • Zeng Y; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
  • Fan C; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
  • Zhang J; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
  • Reinfelder JR; Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
  • Huang W; Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
  • Lu G; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
  • Dang Z; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China. Electronic address: chzdang@sc
Sci Total Environ ; 690: 1100-1109, 2019 Nov 10.
Article em En | MEDLINE | ID: mdl-31470473
ABSTRACT
Jarosite is an iron-hydroxysulfate mineral commonly found in acid mine drainage (AMD). Given its strong adsorption capacity and its ability to co-precipitation with heavy metals, jarosite is considered a potent scavenger of contaminants in AMD-impacted environments. Sulfate-reducing bacteria (SRB) play an important role in the reductive dissolution of jarosite; however, the mechanism involved has yet to be elucidated. In this study, an indigenous SRB community enriched from the Dabaoshan mine area (Guangdong, China) was employed to explore the mechanism of the microbial reduction of jarosite. Different cultures, with or without dissolved sulfate and the physical separation of jarosite from bacteria by dialysis bags, were examined. Results indicate that the reduction of jarosite by SRB occurred via an indirect mechanism. In systems with dissolved sulfate, lactate was incompletely oxidized to acetate coupled with the reduction of SO42- to S2-, which subsequently reduced the Fe3+ in jarosite, forming secondary minerals including vivianite, mackinawite and pyrite. In systems without dissolved sulfate, jarosite dissolution occurred prior to reduction, and similar secondary minerals formed as well. Extracellular polymeric substances secreted by SRB appeared to facilitate the release of sulfate from jarosite. Structural sulfate in the solid phase of jarosite may not be available for SRB respiration. Although direct contact between SRB and jarosite is not necessary for mineral reduction, wrapping jarosite into dialysis bags suppressed the reduction to a certain extent. Microbial community composition differed in direct contact treatments and physical separation treatments. Physical separation of the SRB community from jarosite mineral supported the growth of Citrobacter, while Desulfosporosinus dominated in direct contact treatments.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biodegradação Ambiental / Microbiologia Ambiental Idioma: En Revista: Sci Total Environ Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biodegradação Ambiental / Microbiologia Ambiental Idioma: En Revista: Sci Total Environ Ano de publicação: 2019 Tipo de documento: Article
...