Your browser doesn't support javascript.
loading
Precision control of the large-scale green synthesis of biodegradable gold nanodandelions as potential radiotheranostics.
Chuang, Yao-Chen; Hsia, Yu; Chu, Chia-Hui; Lin, Li-Jie; Sivasubramanian, Maharajan; Lo, Leu-Wei.
Afiliação
  • Chuang YC; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan. lwlo@nhri.edu.tw.
  • Hsia Y; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan. lwlo@nhri.edu.tw and Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan.
  • Chu CH; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan. lwlo@nhri.edu.tw.
  • Lin LJ; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan. lwlo@nhri.edu.tw.
  • Sivasubramanian M; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan. lwlo@nhri.edu.tw.
  • Lo LW; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan. lwlo@nhri.edu.tw.
Biomater Sci ; 7(11): 4720-4729, 2019 Nov 01.
Article em En | MEDLINE | ID: mdl-31495835
ABSTRACT
Herein, we report a new type of biodegradable, high surface-area gold nanodandelions (GNDs). This report possesses important features and some are the first of its kind (1) the large scale green synthesis of GNDs with high monodispersity and a circa 100% yield with consistent chemistry, manufacturing and controls (CMC); (2) cellular/physiological degradability of GNDs leading to its disassembly into debris, which is indicative of the potential for possible body clearance; (3) precision control of the chemicophysical properties of the GNDs including shape, petal number and size, all can be judiciously fine-tuned by the synthetic parameters; (4) highly efficient radiotheranostics of GNDs encompassing better enhanced computed tomography (CT) contrast and pronounced X-ray induced reactive oxygen species (ROS) generation than conventional spherical gold nanoparticles (AuNP). It is noteworthy that the GNDs demonstrate a unique combinational effect of radiosensitization (production of superoxide anions and hydroxyl radicals) and type II photodynamic interaction (generation of singlet oxygen). Given the above, our reported GNDs are promising in clinical translation as radiotheranostics.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Radiofarmacêuticos / Nanopartículas Metálicas / Nanomedicina Teranóstica / Ouro / Antineoplásicos Limite: Animals / Female / Humans Idioma: En Revista: Biomater Sci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Taiwan

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Radiofarmacêuticos / Nanopartículas Metálicas / Nanomedicina Teranóstica / Ouro / Antineoplásicos Limite: Animals / Female / Humans Idioma: En Revista: Biomater Sci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Taiwan