Your browser doesn't support javascript.
loading
Synthesis of PdSx-Mediated Polydymite Heteronanorods and Their Long-Range Activation for Enhanced Water Electroreduction.
Gao, Qiang; Wu, Rui; Liu, Yang; Zheng, Ya-Rong; Li, Yi; Shang, Li-Mei; Ju, Yi-Ming; Gu, Chao; Zheng, Xu-Sheng; Liu, Jian-Wei; Zhu, Jun-Fa; Gao, Min-Rui; Yu, Shu-Hong.
Afiliação
  • Gao Q; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
  • Wu R; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
  • Liu Y; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
  • Zheng YR; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
  • Li Y; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
  • Shang LM; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
  • Ju YM; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
  • Gu C; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
  • Zheng XS; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
  • Liu JW; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
  • Zhu JF; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
  • Gao MR; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
  • Yu SH; Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science a
Research (Wash D C) ; 2019: 8078549, 2019.
Article em En | MEDLINE | ID: mdl-31549084
ABSTRACT
Material interfaces permit electron transfer that modulates the electronic structure and surface properties of catalysts, leading to radically enhanced rates for many important reactions. Unlike conventional thoughts, the nanoscale interfacial interactions have been recently envisioned to be able to affect the reactivity of catalysts far from the interface. However, demonstration of such unlocalized alterations in existing interfacial materials is rare, impeding the development of new catalysts. We report the observation of unprecedented long-range activation of polydymite Ni3S4 nanorods through the interfacial interaction created by PdSx nanodots (dot-on-rod structure) for high-performance water catalytic electroreduction. Experimental results show that this local interaction can activate Ni3S4 rods with length even up to 25 nanometers due to the tailored surface electronic structure. We anticipate that the long-range effect described here may be also applicable to other interfacial material systems, which will aid the development of newly advanced catalysts for modern energy devices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Research (Wash D C) Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Research (Wash D C) Ano de publicação: 2019 Tipo de documento: Article