Your browser doesn't support javascript.
loading
The impact of reducing fatty acid desaturation on the composition and thermal stability of rapeseed oil.
Kaur, Harjeevan; Wang, Lihong; Stawniak, Natalia; Sloan, Raymond; van Erp, Harrie; Eastmond, Peter; Bancroft, Ian.
Afiliação
  • Kaur H; University of York, Heslington, York, UK.
  • Wang L; University of York, Heslington, York, UK.
  • Stawniak N; University of York, Heslington, York, UK.
  • Sloan R; Biorenewables Development Centre, Dunnington, York, UK.
  • van Erp H; Rothamsted Research, Harpenden, UK.
  • Eastmond P; Rothamsted Research, Harpenden, UK.
  • Bancroft I; University of York, Heslington, York, UK.
Plant Biotechnol J ; 18(4): 983-991, 2020 04.
Article em En | MEDLINE | ID: mdl-31553825
ABSTRACT
Oilseed rape (Brassica napus) is the third largest source of vegetable oil globally. In addition to food uses, there are industrial applications that exploit the ability of the species to accumulate the very-long-chain fatty acid (VLCFA) erucic acid in its seed oil, controlled by orthologues of FATTY ACID ELONGASE 1 (Bna.FAE1.A8 and Bna.FAE1.C3). The proportion of polyunsaturated fatty acids (PUFAs) in rapeseed oil is predicted to affect its thermal stability and is controlled by orthologues of FATTY ACID DESATURASE 2, particularly Bna.FAD2.C5. Our aim was to develop rapeseed lines combining high erucic and low PUFA characters and to assess the impact on thermal stability of the oil they produce. The new type of rapeseed oil (high erucic low polyunsaturate; HELP) contained a substantially greater proportion of erucic acid (54%) compared with high erucic rapeseed oil (46%). Although the total VLCFA content was greater in oil from HELP lines (64%) than from high erucic rapeseed (57%), analysis of triacylglycerol composition showed negligible incorporation of VLCFAs into the sn-2 position. Rancimat analysis showed that the thermal stability of rapeseed oil was improved greatly as a consequence of reduction of PUFA content, from 3.8 and 4.2 h in conventional low erucic and high erucic rapeseed oils, respectively, to 11.3 and 16.4 h in high oleic low PUFA (HOLP) and HELP oils, respectively. Our results demonstrate that engineering of the lipid biosynthetic pathway of rapeseed, using traditional approaches, enables the production of renewable industrial oils with novel composition and properties.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Erúcicos / Brassica napus / Óleo de Brassica napus Idioma: En Revista: Plant Biotechnol J Assunto da revista: BIOTECNOLOGIA / BOTANICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Erúcicos / Brassica napus / Óleo de Brassica napus Idioma: En Revista: Plant Biotechnol J Assunto da revista: BIOTECNOLOGIA / BOTANICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido