Your browser doesn't support javascript.
loading
Carrier-resolved photo-Hall effect.
Gunawan, Oki; Pae, Seong Ryul; Bishop, Douglas M; Virgus, Yudistira; Noh, Jun Hong; Jeon, Nam Joong; Lee, Yun Seog; Shao, Xiaoyan; Todorov, Teodor; Mitzi, David B; Shin, Byungha.
Afiliação
  • Gunawan O; IBM T. J. Watson Research Center, Yorktown Heights, NY, USA. ogunawa@us.ibm.com.
  • Pae SR; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
  • Bishop DM; IBM T. J. Watson Research Center, Yorktown Heights, NY, USA.
  • Virgus Y; IBM T. J. Watson Research Center, Yorktown Heights, NY, USA.
  • Noh JH; Division of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea.
  • Jeon NJ; School of Civil, Environmental and Architectural Engineering and Green School, Korea University, Seoul, South Korea.
  • Lee YS; Division of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea.
  • Shao X; IBM T. J. Watson Research Center, Yorktown Heights, NY, USA.
  • Todorov T; Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.
  • Mitzi DB; IBM T. J. Watson Research Center, Yorktown Heights, NY, USA.
  • Shin B; IBM T. J. Watson Research Center, Yorktown Heights, NY, USA.
Nature ; 575(7781): 151-155, 2019 11.
Article em En | MEDLINE | ID: mdl-31590177
ABSTRACT
The fundamental parameters of majority and minority charge carriers-including their type, density and mobility-govern the performance of semiconductor devices yet can be difficult to measure. Although the Hall measurement technique is currently the standard for extracting the properties of majority carriers, those of minority carriers have typically only been accessible through the application of separate techniques. Here we demonstrate an extension to the classic Hall measurement-a carrier-resolved photo-Hall technique-that enables us to simultaneously obtain the mobility and concentration of both majority and minority carriers, as well as the recombination lifetime, diffusion length and recombination coefficient. This is enabled by advances in a.c.-field Hall measurement using a rotating parallel dipole line system and an equation, ΔµH = d(σ2H)/dσ, which relates the hole-electron Hall mobility difference (ΔµH), the conductivity (σ) and the Hall coefficient (H). We apply this technique to various solar absorbers-including high-performance lead-iodide-based perovskites-and demonstrate simultaneous access to majority and minority carrier parameters and map the results against varying light intensities. This information, which is buried within the photo-Hall measurement1,2, had remained inaccessible since the original discovery of the Hall effect in 18793. The simultaneous measurement of majority and minority carriers should have broad applications, including in photovoltaics and other optoelectronic devices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos
...