Your browser doesn't support javascript.
loading
A Novel G Protein-Biased Agonist at the δ Opioid Receptor with Analgesic Efficacy in Models of Chronic Pain.
Conibear, Alexandra E; Asghar, Junaid; Hill, Rob; Henderson, Graeme; Borbely, Eva; Tekus, Valeria; Helyes, Zsuzsanna; Palandri, Josephine; Bailey, Chris; Starke, Ingemar; von Mentzer, Bengt; Kendall, David; Kelly, Eamonn.
Afiliação
  • Conibear AE; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Asghar J; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Hill R; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Henderson G; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Borbely E; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Tekus V; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Helyes Z; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Palandri J; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Bailey C; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Starke I; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • von Mentzer B; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Kendall D; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
  • Kelly E; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, C
J Pharmacol Exp Ther ; 372(2): 224-236, 2020 02.
Article em En | MEDLINE | ID: mdl-31594792
ABSTRACT
Agonists at the δ opioid receptor are known to be potent antihyperalgesics in chronic pain models and effective in models of anxiety and depression. However, some δ opioid agonists have proconvulsant properties while tolerance to the therapeutic effects can develop. Previous evidence indicates that different agonists acting at the δ opioid receptor differentially engage signaling and regulatory pathways with significant effects on behavioral outcomes. As such, interest is now growing in the development of biased agonists as a potential means to target specific signaling pathways and potentially improve the therapeutic profile of δ opioid agonists. Here, we report on PN6047 (3-[[4-(dimethylcarbamoyl)phenyl]-[1-(thiazol-5-ylmethyl)-4-piperidylidene]methyl]benzamide), a novel G protein-biased and selective δ opioid agonist. In cell-based assays, PN6047 fully engages G protein signaling but is a partial agonist in both the arrestin recruitment and internalization assays. PN6047 is effective in rodent models of chronic pain but shows no detectable analgesic tolerance following prolonged treatment. In addition, PN6047 exhibited antidepressant-like activity in the forced swim test, and importantly, the drug had no effect on chemically induced seizures. PN6047 did not exhibit reward-like properties in the conditioned place preference test or induce respiratory depression. Thus, δ opioid ligands with limited arrestin signaling such as PN6047 may be therapeutically beneficial in the treatment of chronic pain states. SIGNIFICANCE STATEMENT PN6047 (3-[[4-(dimethylcarbamoyl)phenyl]-[1-(thiazol-5-ylmethyl)-4-piperidylidene]methyl]benzamide) is a selective, G protein-biased δ opioid agonist with efficacy in preclinical models of chronic pain. No analgesic tolerance was observed after prolonged treatment, and PN6047 does not display proconvulsant activity or other opioid-mediated adverse effects. Our data suggest that δ opioid ligands with limited arrestin signaling will be beneficial in the treatment of chronic pain.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Benzamidas / Receptores Opioides delta / Proteínas de Ligação ao GTP / Dor Crônica / Analgésicos Opioides / Antidepressivos Limite: Animals / Humans / Male Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Benzamidas / Receptores Opioides delta / Proteínas de Ligação ao GTP / Dor Crônica / Analgésicos Opioides / Antidepressivos Limite: Animals / Humans / Male Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2020 Tipo de documento: Article