Your browser doesn't support javascript.
loading
Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme.
Yang, Gloria; Anderson, Dave W; Baier, Florian; Dohmen, Elias; Hong, Nansook; Carr, Paul D; Kamerlin, Shina Caroline Lynn; Jackson, Colin J; Bornberg-Bauer, Erich; Tokuriki, Nobuhiko.
Afiliação
  • Yang G; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
  • Anderson DW; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
  • Baier F; Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
  • Dohmen E; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
  • Hong N; Institute for Evolution and Biodiversity, Evolutionary Bioinformatics, Westfälische Wilhelms University, Münster, Germany.
  • Carr PD; Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.
  • Kamerlin SCL; Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.
  • Jackson CJ; Science for Life Laboratory, Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden.
  • Bornberg-Bauer E; Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.
  • Tokuriki N; Institute for Evolution and Biodiversity, Evolutionary Bioinformatics, Westfälische Wilhelms University, Münster, Germany.
Nat Chem Biol ; 15(11): 1120-1128, 2019 11.
Article em En | MEDLINE | ID: mdl-31636435
ABSTRACT
Characterizing the adaptive landscapes that encompass the emergence of novel enzyme functions can provide molecular insights into both enzymatic and evolutionary mechanisms. Here, we combine ancestral protein reconstruction with biochemical, structural and mutational analyses to characterize the functional evolution of methyl-parathion hydrolase (MPH), an organophosphate-degrading enzyme. We identify five mutations that are necessary and sufficient for the evolution of MPH from an ancestral dihydrocoumarin hydrolase. In-depth analyses of the adaptive landscapes encompassing this evolutionary transition revealed that the mutations form a complex interaction network, defined in part by higher-order epistasis, that constrained the adaptive pathways available. By also characterizing the adaptive landscapes in terms of their functional activities towards three additional organophosphate substrates, we reveal that subtle differences in the polarity of the substrate substituents drastically alter the network of epistatic interactions. Our work suggests that the mutations function collectively to enable substrate recognition via subtle structural repositioning.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Xenobióticos / Epistasia Genética / Hidrolases / Metil Paration Idioma: En Revista: Nat Chem Biol Assunto da revista: BIOLOGIA / QUIMICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Xenobióticos / Epistasia Genética / Hidrolases / Metil Paration Idioma: En Revista: Nat Chem Biol Assunto da revista: BIOLOGIA / QUIMICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Canadá
...