Spin transport properties of 1,4,5,8-naphthalenetetracarboxylic dianhydride based molecular devices.
Phys Chem Chem Phys
; 21(44): 24650-24658, 2019 Nov 28.
Article
em En
| MEDLINE
| ID: mdl-31674629
Using density functional theory combined with the nonequilibrium Green's function method, spin-dependent transport properties of molecular devices consisting of the 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) molecule anchored via C and O linkages to zigzag graphene nanoribbon (ZGNR) electrodes were systematically investigated. Calculation results showed that the two connection modes display a good spin transport performance in both parallel (P) and anti-parallel (AP) configurations. Particularly, oxygen connection significantly improves the spin filtration effect. These observations were validated by analyzing spin-resolved transmission spectra, band structures and spatial distribution of molecular orbitals within the bias window. Further comparison of the results of different models indicated that the linkage plays a crucial role in improving the spin transport properties for the proposed NTCDA-ZGNR system, giving them potential applications in high-performance multifunctional spintronic devices.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Phys Chem Chem Phys
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2019
Tipo de documento:
Article
País de publicação:
Reino Unido