Antitubercular Triazines: Optimization and Intrabacterial Metabolism.
Cell Chem Biol
; 27(2): 172-185.e11, 2020 02 20.
Article
em En
| MEDLINE
| ID: mdl-31711854
The triazine antitubercular JSF-2019 was of interest due to its in vitro efficacy and the nitro group shared with the clinically relevant delamanid and pretomanid. JSF-2019 undergoes activation requiring F420H2 and one or more nitroreductases in addition to Ddn. An intrabacterial drug metabolism (IBDM) platform was leveraged to demonstrate the system kinetics, evidencing formation of NOâ
and a des-nitro metabolite. Structure-activity relationship studies focused on improving the solubility and mouse pharmacokinetic profile of JSF-2019 and culminated in JSF-2513, relying on the key introduction of a morpholine. Mechanistic studies with JSF-2019, JSF-2513, and other triazines stressed the significance of achieving potent in vitro efficacy via release of intrabacterial NOâ
along with inhibition of InhA and, more generally, the FAS-II pathway. This study highlights the importance of probing IBDM and its potential to clarify mechanism of action, which in this case is a combination of NOâ
release and InhA inhibition.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Triazinas
/
Mycobacterium tuberculosis
/
Antituberculosos
Limite:
Animals
Idioma:
En
Revista:
Cell Chem Biol
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos