Your browser doesn't support javascript.
loading
Activation of tumor-promoting pathways implicated in hepatocellular adenoma/carcinoma, a long-term complication of glycogen storage disease type Ia.
Cho, Jun-Ho; Lee, Young Mok; Bae, Seong-Ho; Chou, Janice Y.
Afiliação
  • Cho JH; Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Glycogen Storage Disease Program, Department of Pediatrics, University of Connecticut School of
  • Lee YM; Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Glycogen Storage Disease Program, Department of Pediatrics, University of Connecticut School of
  • Bae SH; Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
  • Chou JY; Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA. Electronic address: chouja@mail.nih.gov.
Biochem Biophys Res Commun ; 522(1): 1-7, 2020 01 29.
Article em En | MEDLINE | ID: mdl-31735334
ABSTRACT
Hepatocellular adenoma/carcinoma (HCA/HCC) is a long-term complication of the metabolic disorder glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6PC or G6Pase-α). We have shown previously that hepatic G6Pase-α deficiency leads to autophagy impairment, mitochondrial dysfunction, enhanced glycolysis, and augmented hexose monophosphate shunt, all of which can contribute to hepatocarcinogenesis. However, the mechanism underlying HCA/HCC development in GSD-Ia remains unclear. We now show that G6Pase-α deficiency-mediated hepatic autophagy impairment leads to sustained accumulation of an autophagy-specific substrate p62 which can activate tumor-promoting pathways including nuclear factor erythroid 2-related factor 2 (Nrf2) and mammalian target of rapamycin complex 1 (mTORC1). Consistently, the HCA/HCC lesions developed in the G6Pase-α-deficient livers display marked accumulation of p62 aggregates and phosphorylated p62 along with activation of Nrf2 and mTORC1 signaling. Furthermore, the HCA/HCC lesions exhibit activation of additional oncogenic pathways, ß-catenin and Yes-associated protein (YAP) which is implicated in autophagy impairment. Intriguingly, hepatic levels of glucose-6-phosphate and glycogen which are accumulated in the G6Pase-α-deficient livers were significantly lower in HCC than those in HCA. Conversely, compared to HCA, the HCC lesion display increased expression of many oncogenes and the M2 isoform of pyruvate kinase (PKM2), a glycolytic enzyme critical for aerobic glycolysis and tumorigenesis. Collectively, our data show that hepatic G6Pase-α-deficiency leads to persistent autophagy impairment and activation of multiple tumor-promoting pathways that contribute to HCA/HCC development in GSD-Ia.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Depósito de Glicogênio Tipo I / Carcinoma Hepatocelular / Neoplasias Hepáticas Limite: Animals Idioma: En Revista: Biochem Biophys Res Commun Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Depósito de Glicogênio Tipo I / Carcinoma Hepatocelular / Neoplasias Hepáticas Limite: Animals Idioma: En Revista: Biochem Biophys Res Commun Ano de publicação: 2020 Tipo de documento: Article