Evolved resistance to partial GAPDH inhibition results in loss of the Warburg effect and in a different state of glycolysis.
J Biol Chem
; 295(1): 111-124, 2020 01 03.
Article
em En
| MEDLINE
| ID: mdl-31748414
Aerobic glycolysis or the Warburg effect (WE) is characterized by increased glucose uptake and incomplete oxidation to lactate. Although the WE is ubiquitous, its biological role remains controversial, and whether glucose metabolism is functionally different during fully oxidative glycolysis or during the WE is unknown. To investigate this question, here we evolved resistance to koningic acid (KA), a natural product that specifically inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a rate-controlling glycolytic enzyme, during the WE. We found that KA-resistant cells lose the WE but continue to conduct glycolysis and surprisingly remain dependent on glucose as a carbon source and also on central carbon metabolism. Consequently, this altered state of glycolysis led to differential metabolic activity and requirements, including emergent activities in and dependences on fatty acid metabolism. These findings reveal that aerobic glycolysis is a process functionally distinct from conventional glucose metabolism and leads to distinct metabolic requirements and biological functions.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Oxigênio
/
Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)
/
Glicólise
Limite:
Humans
Idioma:
En
Revista:
J Biol Chem
Ano de publicação:
2020
Tipo de documento:
Article
País de publicação:
Estados Unidos