Your browser doesn't support javascript.
loading
Compositional and mechanical properties of growing cortical bone tissue: a study of the human fibula.
Lefèvre, Emmanuelle; Farlay, Delphine; Bala, Yohann; Subtil, Fabien; Wolfram, Uwe; Rizzo, Sébastien; Baron, Cécile; Zysset, Philippe; Pithioux, Martine; Follet, Hélène.
Afiliação
  • Lefèvre E; Aix-Marseille Univ., CNRS, ISM Inst Movement Sci, Marseille, France.
  • Farlay D; Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, Marseille, France.
  • Bala Y; Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France.
  • Subtil F; Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France.
  • Wolfram U; Laboratoire Vibrations Acoustique, INSA Lyon, Campus LyonTech la Doua, F69621, Villeurbanne Cedex, France.
  • Rizzo S; Univ Lyon, Université Claude Bernard Lyon 1, Equipe Biostatistique Santé - LBBE, F69003, Lyon, France.
  • Baron C; School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom.
  • Zysset P; Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France.
  • Pithioux M; Aix-Marseille Univ., CNRS, ISM Inst Movement Sci, Marseille, France.
  • Follet H; Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, Marseille, France.
Sci Rep ; 9(1): 17629, 2019 11 26.
Article em En | MEDLINE | ID: mdl-31772277
ABSTRACT
Human cortical bone contains two types of tissue osteonal and interstitial tissue. Growing bone is not well-known in terms of its intrinsic material properties. To date, distinctions between the mechanical properties of osteonal and interstitial regions have not been investigated in juvenile bone and compared to adult bone in a combined dataset. In this work, cortical bone samples obtained from fibulae of 13 juveniles patients (4 to 18 years old) during corrective surgery and from 17 adult donors (50 to 95 years old) were analyzed. Microindentation was used to assess the mechanical properties of the extracellular matrix, quantitative microradiography was used to measure the degree of bone mineralization (DMB), and Fourier transform infrared microspectroscopy was used to evaluate the physicochemical modifications of bone composition (organic versus mineral matrix). Juvenile and adult osteonal and interstitial regions were analyzed for DMB, crystallinity, mineral to organic matrix ratio, mineral maturity, collagen maturity, carbonation, indentation modulus, indicators of yield strain and tissue ductility using a mixed model. We found that the intrinsic properties of the juvenile bone were not all inferior to those of the adult bone. Mechanical properties were also differently explained in juvenile and adult groups. The study shows that different intrinsic properties should be used in case of juvenile bone investigation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fíbula / Osso Cortical Limite: Adolescent / Aged / Aged80 / Child / Child, preschool / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fíbula / Osso Cortical Limite: Adolescent / Aged / Aged80 / Child / Child, preschool / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: França