Your browser doesn't support javascript.
loading
Light-Driven Water Oxidation with the Ir-blue Catalyst and the Ru(bpy)32+/S2O82- Cycle: Photogeneration of Active Dimers, Electron-Transfer Kinetics, and Light Synchronization for Oxygen Evolution with High Quantum Efficiency.
Volpe, Andrea; Tubaro, Cristina; Natali, Mirco; Sartorel, Andrea; Brudvig, Gary W; Bonchio, Marcella.
Afiliação
  • Volpe A; Department of Chemical Sciences , University of Padova , via Marzolo 1 , 35131 Padova , Italy.
  • Tubaro C; Department of Chemical Sciences , University of Padova , via Marzolo 1 , 35131 Padova , Italy.
  • Natali M; Department of Chemical and Pharmaceutical Sciences , University of Ferrara and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem) , sez. di Ferrara, via L. Borsari 46 , 44121 Ferrara , Italy.
  • Sartorel A; Department of Chemical Sciences , University of Padova , via Marzolo 1 , 35131 Padova , Italy.
  • Brudvig GW; Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520-8107 , United States.
  • Bonchio M; Department of Chemical Sciences , University of Padova , via Marzolo 1 , 35131 Padova , Italy.
Inorg Chem ; 58(24): 16537-16545, 2019 Dec 16.
Article em En | MEDLINE | ID: mdl-31774669
ABSTRACT
Light-driven water oxidation is achieved with the Ru(bpy)32+/S2O82- cycle employing the highly active Ir-blue water oxidation catalyst, namely, an IrIV,IV2(pyalc)2 µ-oxo-dimer [pyalc = 2-(2'-pyridyl)-2-propanoate]. Ir-blue is readily formed by stepwise oxidation of the monomeric Ir(III) precursor 1 by the photogenerated Ru(bpy)33+, with a quantum yield ϕ of up to 0.10. Transient absorption spectroscopy and kinetic evidence point to a stepwise mechanism, where the primary event occurs via a fast photoinduced electron transfer from 1 to Ru(bpy)33+, leading to the Ir(IV) monomer I1 (k1 ∼ 108 M-1 s-1). The competent Ir-blue catalyst is then obtained from I1 upon photooxidative loss of the Cp* ligand and dimerization. The Ir-blue catalyst is active in the Ru(bpy)32+/S2O82- light-driven water oxidation cycle, where it undergoes two fast photoinduced electron transfers to Ru(bpy)33+ [with kIr-blue = (3.00 ± 0.02) × 108 M-1 s-1 for the primary event, outperforming iridium oxide nanoparticles by ca. 2 orders of magnitude], leading to a IrV,V2 steady-state intermediate involved in O-O bond formation. The quantum yield for oxygen evolution depends on the photon flux, showing a saturation regime and reaching an impressive value of ϕ(O2) = 0.32 ± 0.01 (corresponding to a quantum efficiency of 64 ± 2%) at low irradiation intensity. This result highlights the key requirement of orchestrating the rate of the photochemical events with dark catalytic turnover.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Itália