Your browser doesn't support javascript.
loading
Driving the catalytic activity of a transmembrane thermosensor kinase.
Inda, María Eugenia; Almada, Juan Cruz; Vazquez, Daniela Belén; Bortolotti, Ana; Fernández, Ariel; Ruysschaert, Jean Marie; Cybulski, Larisa Estefanía.
Afiliação
  • Inda ME; Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council-CONICET, Suipacha 531, 2000, Rosario, Argentina.
  • Almada JC; Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council-CONICET, Suipacha 531, 2000, Rosario, Argentina.
  • Vazquez DB; Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council-CONICET, Suipacha 531, 2000, Rosario, Argentina.
  • Bortolotti A; Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council-CONICET, Suipacha 531, 2000, Rosario, Argentina.
  • Fernández A; Argentine Mathematics Institute-IAM/CONICET, 1053, Buenos Aires, Argentina.
  • Ruysschaert JM; Chemistry Institute-INQUISUR/UNS, National Research Council-CONICET, 8000, Bahía Blanca, Argentina.
  • Cybulski LE; Structure et Fonction des Membranes Biologiques (SFMB) Campus de la Plaine, Boulevard du Triomphe, CP206/02, 1050, Brussels, Belgium.
Cell Mol Life Sci ; 77(19): 3905-3912, 2020 Oct.
Article em En | MEDLINE | ID: mdl-31802141
ABSTRACT
DesK is a Bacillus thermosensor kinase that is inactive at high temperatures but turns activated when the temperature drops below 25 °C. Surprisingly, the catalytic domain (DesKC) lacking the transmembrane region is more active at higher temperature, showing an inverted regulation regarding DesK. How does the transmembrane region control the catalytic domain, repressing activity at high temperatures, but allowing activation at lower temperatures? By designing a set of temperature minimized sensors that share the same catalytic cytoplasmic domain but differ in number and position of hydrogen-bond (H-bond) forming residues along the transmembrane helix, we are able to tune, invert or disconnect activity from the input signal. By favoring differential H-bond networks, the activation peak could be moved towards lower or higher temperatures. This principle may be involved in regulation of other sensors as environmental physicochemical changes or mutations that modify the transmembrane H-bond pattern can tilt the equilibrium favoring alternative conformations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Proteínas de Membrana Limite: Humans Idioma: En Revista: Cell Mol Life Sci Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Argentina

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Proteínas de Membrana Limite: Humans Idioma: En Revista: Cell Mol Life Sci Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Argentina
...