Your browser doesn't support javascript.
loading
Incorporating Contact Network Uncertainty in Individual Level Models of Infectious Disease using Approximate Bayesian Computation.
Almutiry, Waleed; Deardon, Rob.
Afiliação
  • Almutiry W; Department of Mathematics, College of Science and Arts, Qassim University,Ar Rass, Qassim, Saudi Arabia.
  • Deardon R; Department of Mathematics and Statistics and Department of Production Animal Health, University of Calgary, Calgary, Alberta, Canada.
Int J Biostat ; 16(1)2019 12 10.
Article em En | MEDLINE | ID: mdl-31812945
Infectious disease transmission between individuals in a heterogeneous population is often best modelled through a contact network. However, such contact network data are often unobserved. Such missing data can be accounted for in a Bayesian data augmented framework using Markov chain Monte Carlo (MCMC). Unfortunately, fitting models in such a framework can be highly computationally intensive. We investigate the fitting of network-based infectious disease models with completely unknown contact networks using approximate Bayesian computation population Monte Carlo (ABC-PMC) methods. This is done in the context of both simulated data, and data from the UK 2001 foot-and-mouth disease epidemic. We show that ABC-PMC is able to obtain reasonable approximations of the underlying infectious disease model with huge savings in computation time when compared to a full Bayesian MCMC analysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Métodos Epidemiológicos / Doenças Transmissíveis / Modelos Estatísticos / Incerteza Tipo de estudo: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Int J Biostat Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Arábia Saudita País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Métodos Epidemiológicos / Doenças Transmissíveis / Modelos Estatísticos / Incerteza Tipo de estudo: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Int J Biostat Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Arábia Saudita País de publicação: Alemanha