Your browser doesn't support javascript.
loading
Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing.
Zahedinejad, Mohammad; Awad, Ahmad A; Muralidhar, Shreyas; Khymyn, Roman; Fulara, Himanshu; Mazraati, Hamid; Dvornik, Mykola; Åkerman, Johan.
Afiliação
  • Zahedinejad M; Physics Department, University of Gothenburg, Gothenburg, Sweden.
  • Awad AA; NanOsc AB, Kista, Sweden.
  • Muralidhar S; Physics Department, University of Gothenburg, Gothenburg, Sweden.
  • Khymyn R; NanOsc AB, Kista, Sweden.
  • Fulara H; Physics Department, University of Gothenburg, Gothenburg, Sweden.
  • Mazraati H; Physics Department, University of Gothenburg, Gothenburg, Sweden.
  • Dvornik M; NanOsc AB, Kista, Sweden.
  • Åkerman J; Physics Department, University of Gothenburg, Gothenburg, Sweden.
Nat Nanotechnol ; 15(1): 47-52, 2020 01.
Article em En | MEDLINE | ID: mdl-31873287
ABSTRACT
In spin Hall nano-oscillators (SHNOs), pure spin currents drive local regions of magnetic films and nanostructures into auto-oscillating precession. If such regions are placed in close proximity to each other they can interact and may mutually synchronize. Here, we demonstrate robust mutual synchronization of two-dimensional SHNO arrays ranging from 2 × 2 to 8 × 8 nano-constrictions, observed both electrically and using micro-Brillouin light scattering microscopy. On short time scales, where the auto-oscillation linewidth [Formula see text] is governed by white noise, the signal quality factor, [Formula see text], increases linearly with the number of mutually synchronized nano-constrictions (N), reaching 170,000 in the largest arrays. We also show that SHNO arrays exposed to two independently tuned microwave frequencies exhibit the same synchronization maps as can be used for neuromorphic vowel recognition. Our demonstrations may hence enable the use of SHNO arrays in two-dimensional oscillator networks for high-quality microwave signal generation and ultra-fast neuromorphic computing.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Nanotechnol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suécia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Nanotechnol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suécia