Your browser doesn't support javascript.
loading
Photoresponsive Shape Memory Hydrogels for Complex Deformation and Solvent-Driven Actuation.
Li, Guo; Gao, Tingyu; Fan, Guanglin; Liu, Zhaotie; Liu, Zhongwen; Jiang, Jinqiang; Zhao, Yue.
Afiliação
  • Li G; Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China.
  • Gao T; Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China.
  • Fan G; Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China.
  • Liu Z; Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China.
  • Liu Z; Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China.
  • Jiang J; Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China.
  • Zhao Y; Département de chimie , Université de Sherbrooke , Sherbrooke , Québec J1K 2R1 , Canada.
ACS Appl Mater Interfaces ; 12(5): 6407-6418, 2020 Feb 05.
Article em En | MEDLINE | ID: mdl-31880155
ABSTRACT
A new design for photoresponsive shape memory hydrogels and their possible applications are demonstrated in the present study. We show that the photodissociable Fe3+-carboxylate coordination can be utilized as a molecular switch to realize photocontrol of shape memory on both macroscopic and microscopic scales and enable a number of functions. Indeed, Fe3+-carboxylate coordination can fix a large tensile strain (up to 680%) of the sodium alginate/polyacrylamide hydrogel through cross-linking of sodium alginate chains, and subsequent UV irradiation allows strain energy release in spatially selected regions through reduction of Fe3+ to Fe2+. By manipulating light irradiation, complex 3D structures are obtained from 2D hydrogel sheets, and they exhibit complex solvent-driven actuation behaviors due to a light-changeable modulus and cross-linking density in the hydrogel. Based on the same approach, micropatterns can be inscribed on the hydrogel surface using mask-assisted irradiation, and they exhibit chain orientation-mediated anisotropic topography change upon solvent exchange. Moreover, light-controlled strain energy release also enables changing hydrogel surface wettability by solvent replacement. The demonstrated mechanism for photoresponsive hydrogels is highly efficient and applicable to many systems, which offers new perspectives in developing hydrogels with multiple photoresponsive functions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China