Your browser doesn't support javascript.
loading
Potential for improving the local realization of coordinated universal time with a convolutional neural network.
Tanabe, Takehiko; Ye, Jiaxing; Suzuyama, Tomonari; Kobayashi, Takumi; Yamaguchi, Yu; Yasuda, Masami.
Afiliação
  • Tanabe T; National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.
  • Ye J; National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.
  • Suzuyama T; National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.
  • Kobayashi T; National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.
  • Yamaguchi Y; National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.
  • Yasuda M; National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.
Rev Sci Instrum ; 90(12): 125111, 2019 Dec 01.
Article em En | MEDLINE | ID: mdl-31893839
ABSTRACT
The time difference between coordinated universal time (UTC) and a hydrogen maser, which is a master oscillator for the local realization of UTC at the National Metrology Institute of Japan (NMIJ), has been predicted by using one of the deep learning techniques called a one-dimensional convolutional neural network (1D-CNN). Regarding the prediction result obtained by the 1D-CNN, we have observed improvement in the accuracy of prediction compared with that obtained by the Kalman filter. Although more investigations are required to conclude that the 1D-CNN can work as a good predictor, the present results suggest that the computational approach based on the deep learning technique may become a versatile method for improving the synchronous accuracy of UTC(NMIJ) relative to UTC.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Japão
...