Automatic Detection of Epileptic Seizures in EEG Using Sparse CSP and Fisher Linear Discrimination Analysis Algorithm.
J Med Syst
; 44(2): 43, 2020 Jan 02.
Article
em En
| MEDLINE
| ID: mdl-31897615
In order to realize the automatic epileptic seizure detection, feature extraction and classification of electroencephalogram (EEG) signals are performed on the interictal, the pre-ictal, and the ictal status of epilepsy patients. There is no effective strategy for selecting the number of channels and spatial filters in feature extraction of multichannel EEG data. Therefore, this paper combined sparse idea and greedy search algorithm to improve the feature extraction of common space pattern. The feature extraction can effectively overcome the repeating selection problem of feature pattern in the eigenvector space by the traditional method. Then we used the Fisher linear discriminant analysis to realize the classification. The results show that the proposed method can get high classification accuracy using fewer data. For 10 subjects, the averaged accuracy of epilepsy detection is more than 99%. So, the detection of an epileptic seizure based on sparse features using Fisher linear discriminant analysis classifiers is more suitable for a reliable, automatic epileptic seizure detection system to enhance the patient's care and the quality of life.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Processamento de Sinais Assistido por Computador
/
Eletroencefalografia
/
Epilepsia
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Aspecto:
Patient_preference
Limite:
Adolescent
/
Adult
/
Child
/
Child, preschool
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
J Med Syst
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos