Your browser doesn't support javascript.
loading
Cortical fNIRS Responses Can Be Better Explained by Loudness Percept than Sound Intensity.
Weder, Stefan; Shoushtarian, Mehrnaz; Olivares, Virginia; Zhou, Xin; Innes-Brown, Hamish; McKay, Colette.
Afiliação
  • Weder S; Translational Hearing Research, The Bionics Institute, East Melbourne, Victoria, Australia.
  • Shoushtarian M; Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
  • Olivares V; Translational Hearing Research, The Bionics Institute, East Melbourne, Victoria, Australia.
  • Zhou X; Translational Hearing Research, The Bionics Institute, East Melbourne, Victoria, Australia.
  • Innes-Brown H; Translational Hearing Research, The Bionics Institute, East Melbourne, Victoria, Australia.
  • McKay C; Translational Hearing Research, The Bionics Institute, East Melbourne, Victoria, Australia.
Ear Hear ; 41(5): 1187-1195, 2020.
Article em En | MEDLINE | ID: mdl-31985534
ABSTRACT

OBJECTIVES:

Functional near-infrared spectroscopy (fNIRS) is a brain imaging technique particularly suitable for hearing studies. However, the nature of fNIRS responses to auditory stimuli presented at different stimulus intensities is not well understood. In this study, we investigated whether fNIRS response amplitude was better predicted by stimulus properties (intensity) or individually perceived attributes (loudness).

DESIGN:

Twenty-two young adults were included in this experimental study. Four different stimulus intensities of a broadband noise were used as stimuli. First, loudness estimates for each stimulus intensity were measured for each participant. Then, the 4 stimulation intensities were presented in counterbalanced order while recording hemoglobin saturation changes from cortical auditory brain areas. The fNIRS response was analyzed in a general linear model design, using 3 different regressors a non-modulated, an intensity-modulated, and a loudness-modulated regressor.

RESULTS:

Higher intensity stimuli resulted in higher amplitude fNIRS responses. The relationship between stimulus intensity and fNIRS response amplitude was better explained using a regressor based on individually estimated loudness estimates compared with a regressor modulated by stimulus intensity alone.

CONCLUSIONS:

Brain activation in response to different stimulus intensities is more reliant upon individual loudness sensation than physical stimulus properties. Therefore, in measurements using different auditory stimulus intensities or subjective hearing parameters, loudness estimates should be examined when interpreting results.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Auditivo / Espectroscopia de Luz Próxima ao Infravermelho Tipo de estudo: Prognostic_studies Limite: Adult / Humans Idioma: En Revista: Ear Hear Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Auditivo / Espectroscopia de Luz Próxima ao Infravermelho Tipo de estudo: Prognostic_studies Limite: Adult / Humans Idioma: En Revista: Ear Hear Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Austrália