Your browser doesn't support javascript.
loading
High-Density Surface EMG-Based Gesture Recognition Using a 3D Convolutional Neural Network.
Chen, Jiangcheng; Bi, Sheng; Zhang, George; Cao, Guangzhong.
Afiliação
  • Chen J; Shenzhen Academy of Robotics, Shenzhen 518057, China.
  • Bi S; Shenzhen Academy of Robotics, Shenzhen 518057, China.
  • Zhang G; School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China.
  • Cao G; Shenzhen Academy of Robotics, Shenzhen 518057, China.
Sensors (Basel) ; 20(4)2020 Feb 21.
Article em En | MEDLINE | ID: mdl-32098264
High-density surface electromyography (HD-sEMG) and deep learning technology are becoming increasingly used in gesture recognition. Based on electrode grid data, information can be extracted in the form of images that are generated with instant values of multi-channel sEMG signals. In previous studies, image-based, two-dimensional convolutional neural networks (2D CNNs) have been applied in order to recognize patterns in the electrical activity of muscles from an instantaneous image. However, 2D CNNs with 2D kernels are unable to handle a sequence of images that carry information concerning how the instantaneous image evolves with time. This paper presents a 3D CNN with 3D kernels to capture both spatial and temporal structures from sequential sEMG images and investigates its performance on HD-sEMG-based gesture recognition in comparison to the 2D CNN. Extensive experiments were carried out on two benchmark datasets (i.e., CapgMyo DB-a and CSL-HDEMG). The results show that, where the same network architecture is used, 3D CNN can achieve a better performance than 2D CNN, especially for CSL-HDEMG, which contains the dynamic part of finger movement. For CapgMyo DB-a, the accuracy of 3D CNN was 1% higher than 2D CNN when the recognition window length was equal to 40 ms, and was 1.5% higher when equal to 150 ms. For CSL-HDEMG, the accuracies of 3D CNN were 15.3% and 18.6% higher than 2D CNN when the window length was equal to 40 ms and 150 ms, respectively. Furthermore, 3D CNN achieves a competitive performance in comparison to the baseline methods.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Eletromiografia Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Eletromiografia Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China País de publicação: Suíça