Your browser doesn't support javascript.
loading
Preparation and Properties of Inherently Black Polyimide Films with Extremely Low Coefficients of Thermal Expansion and Potential Applications for Black Flexible Copper Clad Laminates.
Tan, Yao-Yao; Zhang, Yan; Jiang, Gang-Lan; Zhi, Xin-Xin; Xiao, Xiao; Wu, Lin; Jia, Yan-Jiang; Liu, Jin-Gang; Zhang, Xiu-Min.
Afiliação
  • Tan YY; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
  • Zhang Y; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
  • Jiang GL; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
  • Zhi XX; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
  • Xiao X; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
  • Wu L; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
  • Jia YJ; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
  • Liu JG; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
  • Zhang XM; School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China.
Polymers (Basel) ; 12(3)2020 Mar 05.
Article em En | MEDLINE | ID: mdl-32150853
ABSTRACT
In the current work, a series of black polyimide (PI) films with excellent thermal and dimensional stability at elevated temperatures were successfully developed. For this purpose, two aromatic diamines including 4,4'-iminodianline (NDA) and 2-(4-aminophenyl)-5- aminobenzimidazole (APBI) were copolymerized with pyromellitic dianhydride (PMDA) to afford PIs containing imino groups (-NH-) in the molecular structures. The referenced PI film, PI-ref, was simultaneously prepared from PMDA and 4,4'-oxydianiline (ODA). The introduction of imino groups endowed the PI films with excellent blackness and opaqueness with the optical transmittance lower than 2% at the wavelength of 600 nm at a thickness of 25 µm and lightness (L*) below 10 for the CIE (Commission International Eclairage) Lab optical parameters. Meanwhile, the introduction of rigid benzimidazole units apparently improved the thermal and dimensional stability of the PI films. The PI-d film based on PMDA and mixed diamines (NDAAPBI = 7030, molar ratio) showed a glass transition temperature (Tg) of 445.5 °C and a coefficient of thermal expansion (CTE) of 8.9 × 10-6/K in the temperature range of 50 to 250 °C, respectively. It is obviously superior to those of the PI-a (PMDA-NDA, Tg = 431.6 °C; CTE = 18.8 × 10-6/K) and PI-ref (PMDA-ODA, Tg = 418.8 °C; CTE 29.5 × 10-6/K) films.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China