Your browser doesn't support javascript.
loading
Tumor necrosis factor primes and metal particles activate the NLRP3 inflammasome in human primary macrophages.
Jämsen, Eemeli; Pajarinen, Jukka; Kouri, Vesa-Petteri; Rahikkala, Antti; Goodman, Stuart B; Manninen, Mikko; Nordström, Dan C; Eklund, Kari K; Nurmi, Katariina.
Afiliação
  • Jämsen E; Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; ORTON Orthopaedic Hospital of the Orton Foundation, Tenh
  • Pajarinen J; Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; ORTON Orthopaedic Hospital of the Orton Foundation, Tenh
  • Kouri VP; Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; ORTON Orthopaedic Hospital of the Orton Foundation, Tenh
  • Rahikkala A; Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Viikinkaari 5 E, P.O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland.
  • Goodman SB; Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5341, United States; Department of Bioengineering, Stanford University, 300 Pasteur Drive, Stanford, CA 94305-5341, United States.
  • Manninen M; ORTON Orthopaedic Hospital of the Orton Foundation, Tenholantie 10, 00280 Helsinki, Finland.
  • Nordström DC; Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; ORTON Orthopaedic Hospital of the Orton Foundation, Tenh
  • Eklund KK; Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; ORTON Orthopaedic Hospital of the Orton Foundation, Tenh
  • Nurmi K; Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; ORTON Orthopaedic Hospital of the Orton Foundation, Tenh
Acta Biomater ; 108: 347-357, 2020 05.
Article em En | MEDLINE | ID: mdl-32194260
ABSTRACT
Aseptic loosening of total joint replacements is driven by a macrophage-mediated inflammatory reaction to implant-derived wear particles. Phagocytosis of implant debris has been suggested to activate the NLRP3 inflammasome leading to secretion of interleukin (IL)-1ß. However, factors and molecular mechanisms driving the particle-induced inflammasome activation are yet to be fully elucidated. In this study, we investigated the inflammasome response of human primary macrophages to titanium, chromium, and molybdenum particles in vitro. We observed that particles alone were not sufficient to induce IL-1ß secretion, but an additional priming signal-such as bacterial lipopolysaccharide (LPS)-was required to license the inflammasome activation. By using specific inhibitors against the inflammasome signaling pathway, we demonstrate that the particle-induced IL-1ß secretion depended upon activation of the NLRP3 inflammasome. We further hypothesized that tumor necrosis factor (TNF) could substitute for LPS as a priming signal, and found that particle stimulation together with preceding TNF treatment resulted in inflammasome-dependent IL-1ß production as well. Our results show that the NLRP3 inflammasome mediates wear particle responses in human primary macrophages, and its activation does not necessarily require the presence of bacterial components, but can be induced under aseptic conditions by TNF priming. STATEMENT OF

SIGNIFICANCE:

This study was conducted to elucidate the molecular mechanisms of metal particle-induced IL-1ß secretion in human primary macrophages. Production of this pro-inflammatory mediator from wear particle-activated macrophages has been associated with increased bone loss around total joint replacements-a condition eventually requiring revision surgery. Our results confirm that together with a co-stimulatory priming signal, particles of common implant metals elicit macrophage-mediated IL-1ß secretion through activation of the NLRP3 inflammasome pathway. We also present a concept of TNF priming in this context, demonstrating that the particle-related IL-1ß secretion can take place in a truly sterile environment. Thus, inhibition of inflammasome signaling appears a means to prevent wear particle-induced inflammation and development of peri­prosthetic osteolysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inflamassomos / Proteína 3 que Contém Domínio de Pirina da Família NLR Limite: Humans Idioma: En Revista: Acta Biomater Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inflamassomos / Proteína 3 que Contém Domínio de Pirina da Família NLR Limite: Humans Idioma: En Revista: Acta Biomater Ano de publicação: 2020 Tipo de documento: Article