Your browser doesn't support javascript.
loading
Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation.
Zhang, Zeda; Zhou, Chuanli; Li, Xiaoling; Barnes, Spencer D; Deng, Su; Hoover, Elizabeth; Chen, Chi-Chao; Lee, Young Sun; Zhang, Yanxiao; Wang, Choushi; Metang, Lauren A; Wu, Chao; Tirado, Carla Rodriguez; Johnson, Nickolas A; Wongvipat, John; Navrazhina, Kristina; Cao, Zhen; Choi, Danielle; Huang, Chun-Hao; Linton, Eliot; Chen, Xiaoping; Liang, Yupu; Mason, Christopher E; de Stanchina, Elisa; Abida, Wassim; Lujambio, Amaia; Li, Sheng; Lowe, Scott W; Mendell, Joshua T; Malladi, Venkat S; Sawyers, Charles L; Mu, Ping.
Afiliação
  • Zhang Z; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Zhou C; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Li X; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Barnes SD; Bioinformatics Core Facility of the Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Deng S; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Hoover E; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Chen CC; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
  • Lee YS; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Zhang Y; Ludwig Institute for Cancer Research, La Jolla, CA, USA.
  • Wang C; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Metang LA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Wu C; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Tirado CR; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Johnson NA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Wongvipat J; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Navrazhina K; Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
  • Cao Z; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
  • Choi D; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Huang CH; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
  • Linton E; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Chen X; Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Liang Y; Center for Clinical and Translational Science, Rockefeller University, New York, NY 10065, USA.
  • Mason CE; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine
  • de Stanchina E; Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Abida W; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Lujambio A; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  • Li S; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Lowe SW; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
  • Mendell JT; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
  • Malladi VS; Bioinformatics Core Facility of the Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Sawyers CL; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Electronic address: sawyersc@mskcc.org.
  • Mu P; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA. Ele
Cancer Cell ; 37(4): 584-598.e11, 2020 04 13.
Article em En | MEDLINE | ID: mdl-32220301
ABSTRACT
Metastatic prostate cancer is characterized by recurrent genomic copy number alterations that are presumed to contribute to resistance to hormone therapy. We identified CHD1 loss as a cause of antiandrogen resistance in an in vivo small hairpin RNA (shRNA) screen of 730 genes deleted in prostate cancer. ATAC-seq and RNA-seq analyses showed that CHD1 loss resulted in global changes in open and closed chromatin with associated transcriptomic changes. Integrative analysis of this data, together with CRISPR-based functional screening, identified four transcription factors (NR3C1, POU3F2, NR2F1, and TBX2) that contribute to antiandrogen resistance, with associated activation of non-luminal lineage programs. Thus, CHD1 loss results in chromatin dysregulation, thereby establishing a state of transcriptional plasticity that enables the emergence of antiandrogen resistance through heterogeneous mechanisms.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromatina / Receptores Androgênicos / DNA Helicases / Resistencia a Medicamentos Antineoplásicos / RNA Interferente Pequeno / Proteínas de Ligação a DNA / Neoplasias de Próstata Resistentes à Castração / Antagonistas de Androgênios Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Cancer Cell Assunto da revista: NEOPLASIAS Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromatina / Receptores Androgênicos / DNA Helicases / Resistencia a Medicamentos Antineoplásicos / RNA Interferente Pequeno / Proteínas de Ligação a DNA / Neoplasias de Próstata Resistentes à Castração / Antagonistas de Androgênios Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Cancer Cell Assunto da revista: NEOPLASIAS Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos