The importance of evaluating the complete automated knowledge-based planning pipeline.
Phys Med
; 72: 73-79, 2020 Apr.
Article
em En
| MEDLINE
| ID: mdl-32222642
We determine how prediction methods combine with optimization methods in two-stage knowledge-based planning (KBP) pipelines to produce radiation therapy treatment plans. We trained two dose prediction methods, a generative adversarial network (GAN) and a random forest (RF) with the same 130 treatment plans. The models were applied to 87 out-of-sample patients to create two sets of predicted dose distributions that were used as input to two optimization models. The first optimization model, inverse planning (IP), estimates weights for dose-objectives from a predicted dose distribution and generates new plans using conventional inverse planning. The second optimization model, dose mimicking (DM), minimizes the sum of one-sided quadratic penalties between the predictions and the generated plans using several dose-objectives. Altogether, four KBP pipelines (GAN-IP, GAN-DM, RF-IP, and RF-DM) were constructed and benchmarked against the corresponding clinical plans using clinical criteria; the error of both prediction methods was also evaluated. The best performing plans were GAN-IP plans, which satisfied the same criteria as their corresponding clinical plans (78%) more often than any other KBP pipeline. However, GAN did not necessarily provide the best prediction for the second-stage optimization models. Specifically, both the RF-IP and RF-DM plans satisfied the same criteria as the clinical plans 25% and 15% more often than GAN-DM plans (the worst performing plans), respectively. GAN predictions also had a higher mean absolute error (3.9 Gy) than those from RF (3.6 Gy). We find that state-of-the-art prediction methods when paired with different optimization algorithms, produce treatment plans with considerable variation in quality.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Planejamento da Radioterapia Assistida por Computador
/
Bases de Conhecimento
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Phys Med
Assunto da revista:
BIOFISICA
/
BIOLOGIA
/
MEDICINA
Ano de publicação:
2020
Tipo de documento:
Article
País de publicação:
Itália