Your browser doesn't support javascript.
loading
ABINIT: Overview and focus on selected capabilities.
Romero, Aldo H; Allan, Douglas C; Amadon, Bernard; Antonius, Gabriel; Applencourt, Thomas; Baguet, Lucas; Bieder, Jordan; Bottin, François; Bouchet, Johann; Bousquet, Eric; Bruneval, Fabien; Brunin, Guillaume; Caliste, Damien; Côté, Michel; Denier, Jules; Dreyer, Cyrus; Ghosez, Philippe; Giantomassi, Matteo; Gillet, Yannick; Gingras, Olivier; Hamann, Donald R; Hautier, Geoffroy; Jollet, François; Jomard, Gérald; Martin, Alexandre; Miranda, Henrique P C; Naccarato, Francesco; Petretto, Guido; Pike, Nicholas A; Planes, Valentin; Prokhorenko, Sergei; Rangel, Tonatiuh; Ricci, Fabio; Rignanese, Gian-Marco; Royo, Miquel; Stengel, Massimiliano; Torrent, Marc; van Setten, Michiel J; Van Troeye, Benoit; Verstraete, Matthieu J; Wiktor, Julia; Zwanziger, Josef W; Gonze, Xavier.
Afiliação
  • Romero AH; Physics and Astronomy Department, West Virginia University, Morgantown, West Virginia 26506-6315, USA.
  • Allan DC; Corning Incorporated, SP-FR-05, Sullivan Park, Corning, New York 14831, USA.
  • Amadon B; CEA DAM-DIF, F-91297 Arpajon, France.
  • Antonius G; Dépt. de Chimie, Biochimie et Physique, Institut de recherche sur l'hydrogène, U. du Québec à Trois-Rivières, C.P. 500, Trois-Rivières (Quebec) G9A 5H7, Canada.
  • Applencourt T; CEA DAM-DIF, F-91297 Arpajon, France.
  • Baguet L; CEA DAM-DIF, F-91297 Arpajon, France.
  • Bieder J; CEA DAM-DIF, F-91297 Arpajon, France.
  • Bottin F; CEA DAM-DIF, F-91297 Arpajon, France.
  • Bouchet J; CEA DAM-DIF, F-91297 Arpajon, France.
  • Bousquet E; Theoretical Materials Physics/Q-Mat/CESAM, Université de Liège (B5), B-4000 Liège, Belgium.
  • Bruneval F; DEN, Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191 Gif-sur Yvette, France.
  • Brunin G; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
  • Caliste D; IRIG-MEM, L-SIM, University Grenoble Alpes, CEA, F-38000 Grenoble, France.
  • Côté M; Dépt. de Physique, U. de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal H3C 3J7, Canada.
  • Denier J; CEA DAM-DIF, F-91297 Arpajon, France.
  • Dreyer C; Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA.
  • Ghosez P; Theoretical Materials Physics/Q-Mat/CESAM, Université de Liège (B5), B-4000 Liège, Belgium.
  • Giantomassi M; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
  • Gillet Y; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
  • Gingras O; Dépt. de Physique, U. de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal H3C 3J7, Canada.
  • Hamann DR; Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA.
  • Hautier G; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
  • Jollet F; CEA DAM-DIF, F-91297 Arpajon, France.
  • Jomard G; CEA, DEN, DEC, Cadarache, F-13108 Saint-Paul-Lez-Durance, France.
  • Martin A; CEA DAM-DIF, F-91297 Arpajon, France.
  • Miranda HPC; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
  • Naccarato F; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
  • Petretto G; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
  • Pike NA; European Theoretical Spectroscopy Facility, https://www.etsf.eu.
  • Planes V; CEA DAM-DIF, F-91297 Arpajon, France.
  • Prokhorenko S; Theoretical Materials Physics/Q-Mat/CESAM, Université de Liège (B5), B-4000 Liège, Belgium.
  • Rangel T; CEA DAM-DIF, F-91297 Arpajon, France.
  • Ricci F; Theoretical Materials Physics/Q-Mat/CESAM, Université de Liège (B5), B-4000 Liège, Belgium.
  • Rignanese GM; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
  • Royo M; Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
  • Stengel M; Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
  • Torrent M; CEA DAM-DIF, F-91297 Arpajon, France.
  • van Setten MJ; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
  • Van Troeye B; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
  • Verstraete MJ; European Theoretical Spectroscopy Facility, https://www.etsf.eu.
  • Wiktor J; CEA, DEN, DEC, Cadarache, F-13108 Saint-Paul-Lez-Durance, France.
  • Zwanziger JW; Department of Chemistry, Dalhousie Univeristy, Halifax, Nova Scotia B3H 4R2, Canada.
  • Gonze X; Institute of Condensed Matter and Nanoscience, UCLouvain, B-1348 Louvain-la-Neuve, Belgium.
J Chem Phys ; 152(12): 124102, 2020 Mar 31.
Article em En | MEDLINE | ID: mdl-32241118
ABSTRACT
abinit is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which abinit relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The abinit DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library libpaw. abinit has strong links with many other software projects that are briefly mentioned.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos