Your browser doesn't support javascript.
loading
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials.
Lansford, Joshua L; Vlachos, Dionisios G.
Afiliação
  • Lansford JL; Department of Chemical Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE, 19716, USA.
  • Vlachos DG; Department of Chemical Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE, 19716, USA. vlachos@udel.edu.
Nat Commun ; 11(1): 1513, 2020 Mar 23.
Article em En | MEDLINE | ID: mdl-32251293
There is a need to characterize complex materials and their dynamics under reaction conditions to accelerate materials design. Adsorbate vibrational excitations are selective to adsorbate/surface interactions and infrared (IR) spectra associated with activating adsorbate vibrational modes are accurate, capture details of most modes, and can be obtained operando. Current interpretation depends on heuristic peak assignments for simple spectra, precluding the possibility of obtaining detailed structural information. Here, we combine data-based approaches with chemistry-dependent problem formulation to develop physics-driven surrogate models that generate synthetic IR spectra from first-principles calculations. Using synthetic IR spectra of carbon monoxide on platinum, we implement multinomial regression via neural network ensembles to learn probability distributions functions (pdfs) that describe adsorption sites and quantify uncertainty. We use these pdfs to infer detailed surface microstructure from experimental spectra and extend this methodology to other systems as a first step towards characterizing complex interfaces and closing the materials gap.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido