Your browser doesn't support javascript.
loading
A hidden Markov modeling approach for identifying tumor subclones in next-generation sequencing studies.
Choo-Wosoba, Hyoyoung; Albert, Paul S; Zhu, Bin.
Afiliação
  • Choo-Wosoba H; Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, Rockville MD 20850 USA.
  • Albert PS; Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, Rockville MD 20850 USA.
  • Zhu B; Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, Rockville MD 20850 USA.
Biostatistics ; 23(1): 69-82, 2022 01 13.
Article em En | MEDLINE | ID: mdl-32282873
Allele-specific copy number alteration (ASCNA) analysis is for identifying copy number abnormalities in tumor cells. Unlike normal cells, tumor cells are heterogeneous as a combination of dominant and minor subclones with distinct copy number profiles. Estimating the clonal proportion and identifying mainclone and subclone genotypes across the genome are important for understanding tumor progression. Several ASCNA tools have recently been developed, but they have been limited to the identification of subclone regions, and not the genotype of subclones. In this article, we propose subHMM, a hidden Markov model-based approach that estimates both subclone region and region-specific subclone genotype and clonal proportion. We specify a hidden state variable representing the conglomeration of clonal genotype and subclone status. We propose a two-step algorithm for parameter estimation, where in the first step, a standard hidden Markov model with this conglomerated state variable is fit. Then, in the second step, region-specific estimates of the clonal proportions are obtained by maximizing region-specific pseudo-likelihoods. We apply subHMM to study renal cell carcinoma datasets in The Cancer Genome Atlas. In addition, we conduct simulation studies that show the good performance of the proposed approach. The R source code is available online at https://dceg.cancer.gov/tools/analysis/subhmm. Expectation-Maximization algorithm; Forward-backward algorithm; Somatic copy number alteration; Tumor subclones.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sequenciamento de Nucleotídeos em Larga Escala / Neoplasias Tipo de estudo: Health_economic_evaluation / Prognostic_studies Limite: Humans Idioma: En Revista: Biostatistics Ano de publicação: 2022 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sequenciamento de Nucleotídeos em Larga Escala / Neoplasias Tipo de estudo: Health_economic_evaluation / Prognostic_studies Limite: Humans Idioma: En Revista: Biostatistics Ano de publicação: 2022 Tipo de documento: Article País de publicação: Reino Unido