Your browser doesn't support javascript.
loading
A solution method for predictive simulations in a stochastic environment.
Koelewijn, Anne D; van den Bogert, Antonie J.
Afiliação
  • Koelewijn AD; Department of Mechanical Engineering, Cleveland State University, USA; Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Machine Learning and Data Analytics Lab, Faculty of Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany. Electronic address: anne.koelewijn@fau.de.
  • van den Bogert AJ; Department of Mechanical Engineering, Cleveland State University, USA.
J Biomech ; 104: 109759, 2020 05 07.
Article em En | MEDLINE | ID: mdl-32312556
Predictive gait simulations currently do not account for environmental or internal noise. We describe a method to solve predictive simulations of human movements in a stochastic environment using a collocation method. The optimization is performed over multiple noisy episodes of the trajectory, instead of a single episode in a deterministic environment. Each episode used the same control parameters. The method was verified on a torque-driven pendulum swing-up problem. A different optimal trajectory was found in a stochastic environment than in the deterministic environment. Next, it was applied to gait to show its application in predictive simulation of human movement. We show that, unlike in a deterministic model, a nonzero minimum foot clearance during swing is predicted by a minimum-effort criterion in a stochastic environment. The predicted amount of foot clearance increased with the noise amplitude.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pé / Marcha Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Biomech Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pé / Marcha Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Biomech Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos