Learning Molecular Representations for Medicinal Chemistry.
J Med Chem
; 63(16): 8705-8722, 2020 08 27.
Article
em En
| MEDLINE
| ID: mdl-32366098
The accurate modeling and prediction of small molecule properties and bioactivities depend on the critical choice of molecular representation. Decades of informatics-driven research have relied on expert-designed molecular descriptors to establish quantitative structure-activity and structure-property relationships for drug discovery. Now, advances in deep learning make it possible to efficiently and compactly learn molecular representations directly from data. In this review, we discuss how active research in molecular deep learning can address limitations of current descriptors and fingerprints while creating new opportunities in cheminformatics and virtual screening. We provide a concise overview of the role of representations in cheminformatics, key concepts in deep learning, and argue that learning representations provides a way forward to improve the predictive modeling of small molecule bioactivities and properties.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Compostos Orgânicos
/
Química Farmacêutica
/
Aprendizado Profundo
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
J Med Chem
Assunto da revista:
QUIMICA
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos