Your browser doesn't support javascript.
loading
Learning Molecular Representations for Medicinal Chemistry.
Chuang, Kangway V; Gunsalus, Laura M; Keiser, Michael J.
Afiliação
  • Chuang KV; Department of Pharmaceutical Chemistry, Department of Bioengineering & Therapeutic Sciences, Institute for Neurodegenerative Diseases, Kavli Institute for Fundamental Neuroscience, Bakar Computational Health Sciences Institute, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, California 94143, United States.
  • Gunsalus LM; Department of Pharmaceutical Chemistry, Department of Bioengineering & Therapeutic Sciences, Institute for Neurodegenerative Diseases, Kavli Institute for Fundamental Neuroscience, Bakar Computational Health Sciences Institute, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, California 94143, United States.
  • Keiser MJ; Department of Pharmaceutical Chemistry, Department of Bioengineering & Therapeutic Sciences, Institute for Neurodegenerative Diseases, Kavli Institute for Fundamental Neuroscience, Bakar Computational Health Sciences Institute, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, California 94143, United States.
J Med Chem ; 63(16): 8705-8722, 2020 08 27.
Article em En | MEDLINE | ID: mdl-32366098
The accurate modeling and prediction of small molecule properties and bioactivities depend on the critical choice of molecular representation. Decades of informatics-driven research have relied on expert-designed molecular descriptors to establish quantitative structure-activity and structure-property relationships for drug discovery. Now, advances in deep learning make it possible to efficiently and compactly learn molecular representations directly from data. In this review, we discuss how active research in molecular deep learning can address limitations of current descriptors and fingerprints while creating new opportunities in cheminformatics and virtual screening. We provide a concise overview of the role of representations in cheminformatics, key concepts in deep learning, and argue that learning representations provides a way forward to improve the predictive modeling of small molecule bioactivities and properties.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Orgânicos / Química Farmacêutica / Aprendizado Profundo Tipo de estudo: Prognostic_studies Idioma: En Revista: J Med Chem Assunto da revista: QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Orgânicos / Química Farmacêutica / Aprendizado Profundo Tipo de estudo: Prognostic_studies Idioma: En Revista: J Med Chem Assunto da revista: QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos