Your browser doesn't support javascript.
loading
Theoretical investigation of a genetic switch for metabolic adaptation.
Laxhuber, Kathrin S; Morrison, Muir J; Chure, Griffin; Belliveau, Nathan M; Strandkvist, Charlotte; Naughton, Kyle L; Phillips, Rob.
Afiliação
  • Laxhuber KS; Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
  • Morrison MJ; Department of Physics, California Institute of Technology, Pasadena, CA, United States of America.
  • Chure G; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.
  • Belliveau NM; Howard Hughes Medical Institute, University of Washington, Seattle, WA, United States of America.
  • Strandkvist C; Department of Systems Biology, Harvard Medical School, Boston, MA, United States of America.
  • Naughton KL; Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States of America.
  • Phillips R; Department of Physics, California Institute of Technology, Pasadena, CA, United States of America.
PLoS One ; 15(5): e0226453, 2020.
Article em En | MEDLINE | ID: mdl-32379825
Membrane transporters carry key metabolites across the cell membrane and, from a resource standpoint, are hypothesized to be produced when necessary. The expression of membrane transporters in metabolic pathways is often upregulated by the transporter substrate. In E. coli, such systems include for example the lacY, araFGH, and xylFGH genes, which encode for lactose, arabinose, and xylose transporters, respectively. As a case study of a minimal system, we build a generalizable physical model of the xapABR genetic circuit, which features a regulatory feedback loop via membrane transport (positive feedback) and enzymatic degradation (negative feedback) of an inducer. Dynamical systems analysis and stochastic simulations show that the membrane transport makes the model system bistable in certain parameter regimes. Thus, it serves as a genetic "on-off" switch, enabling the cell to only produce a set of metabolic enzymes when the corresponding metabolite is present in large amounts. We find that the negative feedback from the degradation enzyme does not significantly disturb the positive feedback from the membrane transporter. We investigate hysteresis in the switching and discuss the role of cooperativity and multiple binding sites in the model circuit. Fundamentally, this work explores how a stable genetic switch for a set of enzymes is obtained from transcriptional auto-activation of a membrane transporter through its substrate.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Genes de Troca / Escherichia coli / Redes Reguladoras de Genes / Modelos Biológicos Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suíça País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Genes de Troca / Escherichia coli / Redes Reguladoras de Genes / Modelos Biológicos Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suíça País de publicação: Estados Unidos