Your browser doesn't support javascript.
loading
Beneficial impact of epigallocatechingallate on LDL-C through PCSK9/LDLR pathway by blocking HNF1α and activating FoxO3a.
Cui, Chuan-Jue; Jin, Jing-Lu; Guo, Lin-Na; Sun, Jing; Wu, Na-Qiong; Guo, Yuan-Lin; Liu, Geng; Dong, Qian; Li, Jian-Jun.
Afiliação
  • Cui CJ; Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
  • Jin JL; Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
  • Guo LN; Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
  • Sun J; Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
  • Wu NQ; Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
  • Guo YL; Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
  • Liu G; Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
  • Dong Q; Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
  • Li JJ; Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China. lijianjun938@126.com.
J Transl Med ; 18(1): 195, 2020 05 12.
Article em En | MEDLINE | ID: mdl-32398139
BACKGROUND: Green tea drinking has been proven to lower lipid and exert cardiovascular protection, while the potential mechanism has not been fully determined. This study was to investigate whether the beneficial impact of epigallocatechingallate (EGCG), a type of catechin in green tea on lipids is associated with proprotein convertase subtilisin/kexin type 9 (PCSK9) pathways. METHODS: We studied the effects and underlying molecular mechanism of EGCG or green tea on regulating cholesterol from human, animal and in vitro. RESULTS: In the age- and gender-matched case control observation, we found that individuals with frequent tea consumption (n = 224) had the lower plasma PCSK9 and low density lipoprotein cholesterol (LDL-C) levels compared with ones without tea consumption (n = 224, p < 0.05). In the high fat diet (HFD) fed rats, EGCG administration significantly lowered circulating PCSK9 concentration and liver PCSK9 expression, along with up-regulated LDL receptor (LDLR) expression but decreased level of LDL-C. In hepatic cell study, similar results were obtained regarding the impact of EGCG on LDLR and PCSK9 expression. The assay transposase-accessible chromatic with high-throughput sequencing (ATAC-seq) and subsequent results suggested that two transcription factors, hepatocyte nuclear factor-1α (HNF-1α) and forkhead box class O (FoxO) 3a involved in inhibitory action of EGCG on PCSK9 expression. CONCLUSIONS: The present study demonstrates that EGCG suppresses PCSK9 production by promoting nuclear FoxO3a, and reducing nuclear HNF1α, resulting in up-regulated LDLR expression and LDL uptake in hepatocytes. Thereby inhibiting liver and circulating PCSK9 levels, and ultimately lowering LDL-C levels.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de LDL / Catequina / Fator 1-alfa Nuclear de Hepatócito / Pró-Proteína Convertase 9 / Proteína Forkhead Box O3 Limite: Animals / Humans Idioma: En Revista: J Transl Med Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de LDL / Catequina / Fator 1-alfa Nuclear de Hepatócito / Pró-Proteína Convertase 9 / Proteína Forkhead Box O3 Limite: Animals / Humans Idioma: En Revista: J Transl Med Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido