How far the vibrational exciton interactions are responsible for the generation of the infrared spectra of oxindole crystals?
Spectrochim Acta A Mol Biomol Spectrosc
; 237: 118302, 2020 Aug 15.
Article
em En
| MEDLINE
| ID: mdl-32416514
Oxindole (indolin-2-one, Ox) is a unique and a crucial molecular system in spectroscopic studies. Indole is the core structure of many substances found in the human body (tryptophan, serotonin) and the indole alkaloids have highly differentiated pharmacological properties such as analgesic, anti-fever and anti-inflammatory. The Ox's structural results given in the Cambridge Structural Database revealed the existence of only one crystalline form of Ox, referred to the α-form. However, we have experimentally noticed the existence of two polymorphic forms during the crystallization of Ox. Furthermore, the significant spectral differences that we have observed in the solid state infrared spectra of these two forms additionally confirm the existence of the polymorphism phenomenon. Of the four polymorphic forms of Ox, two of them - α - and ß-forms - were of particular interest. In the crystalline lattices of both polymorphs, we observed a similar pattern of molecular arrangements giving rise to the supramolecular synthon according to the terminology of Etter. Moreover, hydrogen bonds in the dimer of the α-form are found to be non-equivalent (non-centrosymmetric dimers), having a length of 2797 Å and 2979 Å, respectively. Comparatively, in the most densely packed crystalline structure of Ox, the ß-form, the dimer is formed by a pair of almost identical intermolecular hydrogen bonds and consequently the crystals of ß-form exhibited spectral properties typical to centrosymmetric hydrogen bond dimers. In addition, the spectroscopic studies that we have conducted to polymorphic forms of Ox, isotopically diluted with deuterium, show the dramatic influence of isotopic substitution in the hydrogen bridge on the infrared spectra of hydrogen bonding. Thus, the main goal of this work is the proposition of a theoretical approach that can describe the main features of the crystalline infrared spectra of the Ox polymorphs. The proposed approach is based on the phenomenon of the exciton coupling results directly from intermolecular interactions in the vibrationally excited state which leads to the delocalization of the excitation over the molecules in the lattice and to the Davydov splitting effect in the crystalline spectra.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Spectrochim Acta A Mol Biomol Spectrosc
Assunto da revista:
BIOLOGIA MOLECULAR
Ano de publicação:
2020
Tipo de documento:
Article
País de publicação:
Reino Unido