Your browser doesn't support javascript.
loading
Considering discrepancy when calibrating a mechanistic electrophysiology model.
Lei, Chon Lok; Ghosh, Sanmitra; Whittaker, Dominic G; Aboelkassem, Yasser; Beattie, Kylie A; Cantwell, Chris D; Delhaas, Tammo; Houston, Charles; Novaes, Gustavo Montes; Panfilov, Alexander V; Pathmanathan, Pras; Riabiz, Marina; Dos Santos, Rodrigo Weber; Walmsley, John; Worden, Keith; Mirams, Gary R; Wilkinson, Richard D.
Afiliação
  • Lei CL; Computational Biology and Health Informatics, Department of Computer Science, University of Oxford, Oxford, UK.
  • Ghosh S; MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
  • Whittaker DG; Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
  • Aboelkassem Y; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
  • Beattie KA; Systems Modeling and Translational Biology, GlaxoSmithKline R&D, Stevenage, UK.
  • Cantwell CD; ElectroCardioMaths Programme, Centre for Cardiac Engineering, Imperial College London, London, UK.
  • Delhaas T; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
  • Houston C; ElectroCardioMaths Programme, Centre for Cardiac Engineering, Imperial College London, London, UK.
  • Novaes GM; Graduate Program in Computational Modeling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil.
  • Panfilov AV; Department of Physics and Astronomy, Ghent University, Ghent, Belgium.
  • Pathmanathan P; Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia.
  • Riabiz M; US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, MD, USA.
  • Dos Santos RW; Department of Biomedical Engineering King's College London and Alan Turing Institute, London, UK.
  • Walmsley J; Graduate Program in Computational Modeling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil.
  • Worden K; James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.
  • Mirams GR; Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
  • Wilkinson RD; Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190349, 2020 Jun 12.
Article em En | MEDLINE | ID: mdl-32448065
ABSTRACT
Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterize uncertainty in model inputs and how that propagates through to outputs or predictions; examples of this can be seen in the papers of this issue. In this review and perspective piece, we draw attention to an important and under-addressed source of uncertainty in our predictions-that of uncertainty in the model structure or the equations themselves. The difference between imperfect models and reality is termed model discrepancy, and we are often uncertain as to the size and consequences of this discrepancy. Here, we provide two examples of the consequences of discrepancy when calibrating models at the ion channel and action potential scales. Furthermore, we attempt to account for this discrepancy when calibrating and validating an ion channel model using different methods, based on modelling the discrepancy using Gaussian processes and autoregressive-moving-average models, then highlight the advantages and shortcomings of each approach. Finally, suggestions and lines of enquiry for future work are provided. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenômenos Eletrofisiológicos / Modelos Cardiovasculares Tipo de estudo: Prognostic_studies Idioma: En Revista: Philos Trans A Math Phys Eng Sci Assunto da revista: BIOFISICA / ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenômenos Eletrofisiológicos / Modelos Cardiovasculares Tipo de estudo: Prognostic_studies Idioma: En Revista: Philos Trans A Math Phys Eng Sci Assunto da revista: BIOFISICA / ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM