Your browser doesn't support javascript.
loading
Implementation of a Single Emulsion Mask for Three-Dimensional (3D) Microstructure Fabrication of Micromixers Using the Grayscale Photolithography Technique.
Abdul Hamid, Intan Sue Liana; Khi Khim, Beh; Sal Hamid, Sofiyah; Abd Rahman, Mohamad Faizal; Abd Manaf, Asrulnizam.
Afiliação
  • Abdul Hamid ISL; Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia (USM), Sains@USM, Pulau Pinang 11900, Malaysia.
  • Khi Khim B; Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Johor 86400, Malaysia.
  • Sal Hamid S; Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia (USM), Sains@USM, Pulau Pinang 11900, Malaysia.
  • Abd Rahman MF; Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia (USM), Sains@USM, Pulau Pinang 11900, Malaysia.
  • Abd Manaf A; Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia (USM), Sains@USM, Pulau Pinang 11900, Malaysia.
Micromachines (Basel) ; 11(6)2020 May 29.
Article em En | MEDLINE | ID: mdl-32485795
Three-dimensional (3D) microstructures have been exploited in various applications of microfluidic devices. Multilevel structures in micromixers are among the essential structures in microfluidic devices that exploit 3D microstructures for different tasks. The efficiency of the micromixing process is thus crucial, as it affects the overall performance of a microfluidic device. Microstructures are currently fabricated by less effective techniques due to a slow point-to-point and layer-by-layer pattern exposure by using sophisticated and expensive equipment. In this work, a grayscale photolithography technique is proposed with the capability of simultaneous control on lateral and vertical dimensions of microstructures in a single mask implementation. Negative photoresist SU8 is used for mould realisation with structural height ranging from 163.8 to 1108.7 µm at grayscale concentration between 60% to 98%, depending on the UV exposure time. This technique is exploited in passive micromixers fabrication with multilevel structures to study the mixing performance. Based on optical absorbance analysis, it is observed that 3D serpentine structure gives the best mixing performance among other types of micromixers.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Malásia País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Malásia País de publicação: Suíça