Your browser doesn't support javascript.
loading
SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.
Bargsten, Lennart; Schlaefer, Alexander.
Afiliação
  • Bargsten L; Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany. lennart.bargsten@tuhh.de.
  • Schlaefer A; Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany.
Int J Comput Assist Radiol Surg ; 15(9): 1427-1436, 2020 Sep.
Article em En | MEDLINE | ID: mdl-32556953
PURPOSE: In the field of medical image analysis, deep learning methods gained huge attention over the last years. This can be explained by their often improved performance compared to classic explicit algorithms. In order to work well, they need large amounts of annotated data for supervised learning, but these are often not available in the case of medical image data. One way to overcome this limitation is to generate synthetic training data, e.g., by performing simulations to artificially augment the dataset. However, simulations require domain knowledge and are limited by the complexity of the underlying physical model. Another method to perform data augmentation is the generation of images by means of neural networks. METHODS: We developed a new algorithm for generation of synthetic medical images exhibiting speckle noise via generative adversarial networks (GANs). Key ingredient is a speckle layer, which can be incorporated into a neural network in order to add realistic and domain-dependent speckle. We call the resulting GAN architecture SpeckleGAN. RESULTS: We compared our new approach to an equivalent GAN without speckle layer. SpeckleGAN was able to generate ultrasound images with very crisp speckle patterns in contrast to the baseline GAN, even for small datasets of 50 images. SpeckleGAN outperformed the baseline GAN by up to 165 % with respect to the Fréchet Inception distance. For artery layer and lumen segmentation, a performance improvement of up to 4 % was obtained for small datasets, when these were augmented with images by SpeckleGAN. CONCLUSION: SpeckleGAN facilitates the generation of realistic synthetic ultrasound images to augment small training sets for deep learning based image processing. Its application is not restricted to ultrasound images but could be used for every imaging methodology that produces images with speckle such as optical coherence tomography or radar.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Ultrassonografia / Redes Neurais de Computação / Aprendizado Profundo Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Assunto da revista: RADIOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Ultrassonografia / Redes Neurais de Computação / Aprendizado Profundo Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Assunto da revista: RADIOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Alemanha