Your browser doesn't support javascript.
loading
Deep learning improves contrast in low-fluence photoacoustic imaging.
Hariri, Ali; Alipour, Kamran; Mantri, Yash; Schulze, Jurgen P; Jokerst, Jesse V.
Afiliação
  • Hariri A; Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA.
  • Alipour K; These authors contributed equally to this paper.
  • Mantri Y; Department of Computer Science, University of California, San Diego, La Jolla, CA 92093, USA.
  • Schulze JP; These authors contributed equally to this paper.
  • Jokerst JV; Department of BioEngineering, University of California, San Diego, La Jolla, CA 92093, USA.
Biomed Opt Express ; 11(6): 3360-3373, 2020 Jun 01.
Article em En | MEDLINE | ID: mdl-32637260
Low fluence illumination sources can facilitate clinical transition of photoacoustic imaging because they are rugged, portable, affordable, and safe. However, these sources also decrease image quality due to their low fluence. Here, we propose a denoising method using a multi-level wavelet-convolutional neural network to map low fluence illumination source images to its corresponding high fluence excitation map. Quantitative and qualitative results show a significant potential to remove the background noise and preserve the structures of target. Substantial improvements up to 2.20, 2.25, and 4.3-fold for PSNR, SSIM, and CNR metrics were observed, respectively. We also observed enhanced contrast (up to 1.76-fold) in an in vivo application using our proposed methods. We suggest that this tool can improve the value of such sources in photoacoustic imaging.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Qualitative_research Idioma: En Revista: Biomed Opt Express Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Qualitative_research Idioma: En Revista: Biomed Opt Express Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos