Your browser doesn't support javascript.
loading
RTExtract: time-series NMR spectra quantification based on 3D surface ridge tracking.
Wu, Yue; Judge, Michael T; Arnold, Jonathan; Bhandarkar, Suchendra M; Edison, Arthur S.
Afiliação
  • Wu Y; Institute of Bioinformatics.
  • Judge MT; Department of Genetics.
  • Arnold J; Institute of Bioinformatics.
  • Bhandarkar SM; Department of Genetics.
  • Edison AS; Department of Computer Science.
Bioinformatics ; 36(20): 5068-5075, 2020 12 22.
Article em En | MEDLINE | ID: mdl-32653900
ABSTRACT
MOTIVATION Time-series nuclear magnetic resonance (NMR) has advanced our knowledge about metabolic dynamics. Before analyzing compounds through modeling or statistical methods, chemical features need to be tracked and quantified. However, because of peak overlap and peak shifting, the available protocols are time consuming at best or even impossible for some regions in NMR spectra.

RESULTS:

We introduce Ridge Tracking-based Extract (RTExtract), a computer vision-based algorithm, to quantify time-series NMR spectra. The NMR spectra of multiple time points were formulated as a 3D surface. Candidate points were first filtered using local curvature and optima, then connected into ridges by a greedy algorithm. Interactive steps were implemented to refine results. Among 173 simulated ridges, 115 can be tracked (RMSD < 0.001). For reproducing previous results, RTExtract took less than 2 h instead of ∼48 h, and two instead of seven parameters need tuning. Multiple regions with overlapping and changing chemical shifts are accurately tracked. AVAILABILITY AND IMPLEMENTATION Source code is freely available within Metabolomics toolbox GitHub repository (https//github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA/tree/master/metabolomics_toolbox/code/ridge_tracking) and is implemented in MATLAB and R. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Imageamento por Ressonância Magnética Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Imageamento por Ressonância Magnética Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article