Iris Liveness Detection Using Fusion of Domain-Specific Multiple BSIF and DenseNet Features.
IEEE Trans Cybern
; 52(4): 2370-2381, 2022 Apr.
Article
em En
| MEDLINE
| ID: mdl-32697732
In the past few years, some fusion-based approaches have been proposed to constitute discriminatory features for iris liveness detection. However, several methods exist in the literature for iris feature extraction and, thus, identifying an optimal composite of such features is still a vital challenge. This article also proposes a score-level fusion of two distinct domain-specific features, i.e., multiple binarized statistical image feature (BSIF) and DenseNet-based features. However, instead of randomly scrutinizing such features, statistical tests are executed on six predominant iris features to identify the optimal feature set to combine. Particularly, this work emphasizes textured-lens-based presentation attacks and aims to identify the type of contact lenses within the iris samples. The experimental analysis depicts that the domain-specific features substantially outperform the generic features while discriminating live iris from the artifacts. Furthermore, the proposed fusion-based approach is assessed on three iris datasets and the outcomes are compared with various state of the arts using three validation protocols in terms of equal error rate (EER). The comparative analysis perceived that the proposed method obtains a significant performance gain over the existing approaches and offers an improved benchmark for both, iris liveness detection and contact lens identification.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Iris
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
IEEE Trans Cybern
Ano de publicação:
2022
Tipo de documento:
Article
País de publicação:
Estados Unidos