Your browser doesn't support javascript.
loading
An Integrative Analysis of Transcriptome, Proteome and Hormones Reveals Key Differentially Expressed Genes and Metabolic Pathways Involved in Flower Development in Loquat.
Jing, Danlong; Chen, Weiwei; Hu, Ruoqian; Zhang, Yuchen; Xia, Yan; Wang, Shuming; He, Qiao; Guo, Qigao; Liang, Guolu.
Afiliação
  • Jing D; Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China.
  • Chen W; Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China.
  • Hu R; Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China.
  • Zhang Y; Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China.
  • Xia Y; Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China.
  • Wang S; Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China.
  • He Q; Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China.
  • Guo Q; Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China.
  • Liang G; Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China.
Int J Mol Sci ; 21(14)2020 Jul 20.
Article em En | MEDLINE | ID: mdl-32698310
Flower development is a vital developmental process in the life cycle of woody perennials, especially fruit trees. Herein, we used transcriptomic, proteomic, and hormone analyses to investigate the key candidate genes/proteins in loquat (Eriobotrya japonica) at the stages of flower bud differentiation (FBD), floral bud elongation (FBE), and floral anthesis (FA). Comparative transcriptome analysis showed that differentially expressed genes (DEGs) were mainly enriched in metabolic pathways of hormone signal transduction and starch and sucrose metabolism. Importantly, the DEGs of hormone signal transduction were significantly involved in the signaling pathways of auxin, gibberellins (GAs), cytokinin, ethylene, abscisic acid (ABA), jasmonic acid, and salicylic acid. Meanwhile, key floral integrator genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and floral meristem identity genes SQUAMOSA PROMOTER BINDING LIKE (SPL), LEAFY (LFY), APETALA1 (AP1), and AP2 were significantly upregulated at the FBD stage. However, key floral organ identity genes AGAMOUS (AG), AP3, and PISTILLATA (PI) were significantly upregulated at the stages of FBE and FA. Furthermore, transcription factors (TFs) such as bHLH (basic helix-loop-helix), NAC (no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF1/2) and cup-shaped cotyledon (CUC2)), MYB_related (myeloblastosis_related), ERF (ethylene response factor), and C2H2 (cysteine-2/histidine-2) were also significantly differentially expressed. Accordingly, comparative proteomic analysis of differentially accumulated proteins (DAPs) and combined enrichment of DEGs and DAPs showed that starch and sucrose metabolism was also significantly enriched. Concentrations of GA3 and zeatin were high before the FA stage, but ABA concentration remained high at the FA stage. Our results provide abundant sequence resources for clarifying the underlying mechanisms of the flower development in loquat.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica de Plantas / Eriobotrya / Flores / Transcriptoma Idioma: En Revista: Int J Mol Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica de Plantas / Eriobotrya / Flores / Transcriptoma Idioma: En Revista: Int J Mol Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China País de publicação: Suíça