Your browser doesn't support javascript.
loading
Integration of Macro-Cross-Linker and Metal Coordination: A Super Stretchable Hydrogel with High Toughness.
Das Mahapatra, Rita; Imani, Kusuma Betha Cahaya; Yoon, Jinhwan.
Afiliação
  • Das Mahapatra R; Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
  • Imani KBC; Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
  • Yoon J; Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
ACS Appl Mater Interfaces ; 12(36): 40786-40793, 2020 Sep 09.
Article em En | MEDLINE | ID: mdl-32805982
The development of multifunctional hydrogels with high strength and stretchability is one of the most important topics in soft-matter research owing to their potential applications in various fields. In this work, a dual physically cross-linked network was designed for the fabrication of ultrastretchable tough hydrogels. The hydrogels were prepared through in situ polymerization of acrylic acid and acrylamide in the presence of positively charged quaternary poly(ethylene imine) (Q-PEI) and micelle-forming Pluronic F127 diacrylate, thus introducing electrostatic interactions between the positively charged Q-PEI and negatively charged poly(acrylic acid-co-acrylamide). For further mechanical reinforcement, Ca2+ and Cu2+ ions were introduced into the hydrogel network to construct coordination bonds, significantly enhancing tensile strength as well as stretchability. The hydrogel prepared with Ca2+ ion coordination bonds was found to be stretchable to 108 times its original length and exhibited a maximum toughness of 177 MJ·m-3, representing one of the most robust systems with both extraordinary toughness and superstretchability prepared to date. The hydrogels also exhibited excellent recovery of dimensions and reproducibility in terms of mechanical properties, providing a promising ultrastretchable soft-matter system with outstanding mechanical strength.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos