High-Energy Proton-Beam-Induced Polymerization/Oxygenation of Hydroxynaphthalenes on Meteorites and Nitrogen Transfer from Urea: Modeling Insoluble Organic Matter?
Chemistry
; 26(65): 14919-14928, 2020 Nov 20.
Article
em En
| MEDLINE
| ID: mdl-32846019
Formation and structural modification of oxygenated polycyclic aromatic hydrocarbons (oxyPAHs) by UV irradiation on minerals have recently been proposed as a possible channel of PAH transformation in astrochemical and prebiotic scenarios of possible relevance for the origin of life. Herein, it is demonstrated that high-energy proton-beam irradiation in the presence of various meteorites, including stony iron, achondrite, and chondrite types, promotes the conversion of two representative oxyPAH compounds, 1-naphthol and 1,8-dihydroxynaphthalene, to complex mixtures of oxygenated and oligomeric derivatives. The main identified products include polyhydroxy derivatives, isomeric dimers encompassing benzofuran and benzopyran scaffolds, and, notably, a range of quinones and perylene derivatives. Addition of urea, a prebiotically relevant chemical precursor, expanded the range of identified species to include, among others, quinone diimines. Proton-beam irradiation of oxyPAH modulated by nitrogen-containing compounds such as urea is proposed as a possible contributory mechanism for the formation and processing of insoluble organic matter in meteorites and in prebiotic processes.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Chemistry
Assunto da revista:
QUIMICA
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Itália
País de publicação:
Alemanha