Your browser doesn't support javascript.
loading
Fluorescence-Based and Fluorescent Label-Free Characterization of Polymer Nanoparticle Decorated T Cells.
Thomsen, Tanja; Ayoub, Ahmed B; Psaltis, Demetri; Klok, Harm-Anton.
Afiliação
  • Thomsen T; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
  • Ayoub AB; Institute of Microengineering, Optics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment BM, Station 17, CH-1015 Lausanne, Switzerland.
  • Psaltis D; Institute of Microengineering, Optics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment BM, Station 17, CH-1015 Lausanne, Switzerland.
  • Klok HA; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
Biomacromolecules ; 22(1): 190-200, 2021 01 11.
Article em En | MEDLINE | ID: mdl-32869972
ABSTRACT
Cells are attractive carriers for the transport and delivery of nanoparticulate cargo. The use of cell-based carriers allows one to enhance control over the biodistribution of drug-loaded polymers and polymer nanoparticles. One key element in the development of cell-based delivery systems is the loading of the cell-based carrier with the nanoparticle cargo, which can be achieved either by internalization of the payload or by immobilization on the cell surface. The surface modification of cells with nanoparticles or the internalization of nanoparticles by cells is usually monitored with fluorescence-based techniques, such as flow cytometry and confocal microscopy. In spite of the widespread use of these techniques, the use of fluorescent labels also poses some risks and has several drawbacks. Fluorescent dyes may bleach, or leach from, the nanoparticles or alter the physicochemical properties of nanoparticles and their interactions with and uptake by cells. Using poly(d,l-lactic acid) nanoparticles that are loaded with Coumarin 6, BODIPY 493/503, or DiO dyes as a model system, this paper demonstrates that the use of physically entrapped fluorescent labels can lead to false negative or erroneous results. The use of nanoparticles that contain covalently tethered fluorescent dyes instead was found to provide a robust approach to monitor cell surface conjugation reactions and to quantitatively analyze nanoparticle-decorated cells. Finally, it is shown that optical diffraction tomography is an attractive, alternative technique for the characterization of nanoparticle-decorated cells, which obviates the need for fluorescent labels.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Nanopartículas Idioma: En Revista: Biomacromolecules Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Nanopartículas Idioma: En Revista: Biomacromolecules Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Suíça