Your browser doesn't support javascript.
loading
Quantitative Anisotropic Analysis of Molecular Orientation in Amorphous N2O at 6 K by Infrared Multiple-Angle Incidence Resolution Spectrometry.
Hama, Tetsuya; Ishibashi, Atsuki; Kouchi, Akira; Watanabe, Naoki; Shioya, Nobutaka; Shimoaka, Takafumi; Hasegawa, Takeshi.
Afiliação
  • Hama T; Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.
  • Ishibashi A; Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.
  • Kouchi A; Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
  • Watanabe N; Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
  • Shioya N; Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
  • Shimoaka T; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
  • Hasegawa T; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
J Phys Chem Lett ; 11(18): 7857-7866, 2020 Sep 17.
Article em En | MEDLINE | ID: mdl-32894947
ABSTRACT
The existence of molecular orientational order in nanometer-thick films of molecules has long been implied by surface potential measurements. However, direct quantitative determination of the molecular orientation is challenging, especially for metastable amorphous thin films at low temperatures. This study quantifies molecular orientation in amorphous N2O at 6 K using infrared multiple-angle incidence resolution spectrometry (IR-MAIRS). The intensity ratio of the weak antisymmetric stretching vibration band of the 14N15NO isotopomer between the in-plane and out-of-plane IR-MAIRS spectra provides an average molecular orientation angle of 65° from the surface normal. No discernible change is observed in the orientation angle when a different substrate material is used (Si and Ar) at 6 K or the Si substrate temperature is changed in the range of 6-14 K. This suggests that the transient mobility of N2O during physisorption is key in governing the molecular orientation in amorphous N2O.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Incidence_studies / Risk_factors_studies Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Incidence_studies / Risk_factors_studies Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Japão