Your browser doesn't support javascript.
loading
Structure-function studies of Rgg binding to pheromones and target promoters reveal a model of transcription factor interplay.
Capodagli, Glenn C; Tylor, Kaitlyn M; Kaelber, Jason T; Petrou, Vasileios I; Federle, Michael J; Neiditch, Matthew B.
Afiliação
  • Capodagli GC; Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ 07103.
  • Tylor KM; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60607.
  • Kaelber JT; Rutgers New Jersey Cryo-Electron Microscopy & Tomography Core Facility, Rutgers University, Piscataway, NJ 08854.
  • Petrou VI; Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854.
  • Federle MJ; Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ 07103; vasileios.petrou@rutgers.edu mfederle@uic.edu matthew.neiditch@rutgers.edu.
  • Neiditch MB; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ 07103.
Proc Natl Acad Sci U S A ; 117(39): 24494-24502, 2020 09 29.
Article em En | MEDLINE | ID: mdl-32907945
Regulator gene of glucosyltransferase (Rgg) family proteins, such as Rgg2 and Rgg3, have emerged as primary quorum-sensing regulated transcription factors in Streptococcus species, controlling virulence, antimicrobial resistance, and biofilm formation. Rgg2 and Rgg3 function is regulated by their interaction with oligopeptide quorum-sensing signals called short hydrophobic peptides (SHPs). The molecular basis of Rgg-SHP and Rgg-target DNA promoter specificity was unknown. To close this gap, we determined the cryoelectron microscopy (cryo-EM) structure of Streptococcus thermophilus Rgg3 bound to its quorum-sensing signal, SHP3, and the X-ray crystal structure of Rgg3 alone. Comparison of these structures with that of an Rgg in complex with cyclosporin A (CsA), an inhibitor of SHP-induced Rgg activity, reveals the molecular basis of CsA function. Furthermore, to determine how Rgg proteins recognize DNA promoters, we determined X-ray crystal structures of both Streptococcus dysgalactiae Rgg2 and S. thermophilus Rgg3 in complex with their target DNA promoters. The physiological importance of observed Rgg-DNA interactions was dissected using in vivo genetic experiments and in vitro biochemical assays. Based on these structure-function studies, we present a revised unifying model of Rgg regulatory interplay. In contrast to existing models, where Rgg2 proteins are transcriptional activators and Rgg3 proteins are transcriptional repressors, we propose that both are capable of transcriptional activation. However, when Rgg proteins with different activation requirements compete for the same DNA promoters, those with more stringent activation requirements function as repressors by blocking promoter access of SHP-bound conformationally active Rgg proteins. While a similar gene expression regulatory scenario has not been previously described, in all likelihood it is not unique to streptococci.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Feromônios / Proteínas de Bactérias / Transativadores / Streptococcus thermophilus Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Feromônios / Proteínas de Bactérias / Transativadores / Streptococcus thermophilus Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos