Your browser doesn't support javascript.
loading
Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird.
Gillies, Natasha; Fayet, Annette L; Padget, Oliver; Syposz, Martyna; Wynn, Joe; Bond, Sarah; Evry, James; Kirk, Holly; Shoji, Akiko; Dean, Ben; Freeman, Robin; Guilford, Tim.
Afiliação
  • Gillies N; Department of Zoology, University of Oxford, Oxford, UK. Natasha.gillies@zoo.ox.ac.uk.
  • Fayet AL; Department of Zoology, University of Oxford, Oxford, UK.
  • Padget O; Department of Zoology, University of Oxford, Oxford, UK.
  • Syposz M; Department of Zoology, University of Oxford, Oxford, UK.
  • Wynn J; Department of Zoology, University of Oxford, Oxford, UK.
  • Bond S; School of Ocean Sciences, Bangor University, Bangor, UK.
  • Evry J; Department of Zoology, University of Oxford, Oxford, UK.
  • Kirk H; Interdisciplinary Conservation Science Group, RMIT University, Carlton, Australia.
  • Shoji A; Graduate School of Life and Environmental Sciences, University of Tskuba, Tskuba, Japan.
  • Dean B; Department of Zoology, University of Oxford, Oxford, UK.
  • Freeman R; Institute of Zoology, Zoological Society of London, London, UK.
  • Guilford T; Department of Zoology, University of Oxford, Oxford, UK. tim.guilford@zoo.ox.ac.uk.
Sci Rep ; 10(1): 15056, 2020 09 14.
Article em En | MEDLINE | ID: mdl-32929167
ABSTRACT
Biologging has emerged as one of the most powerful and widely used technologies in ethology and ecology, providing unprecedented insight into animal behaviour. However, attaching loggers to animals may alter their behaviour, leading to the collection of data that fails to represent natural activity accurately. This is of particular concern in free-ranging animals, where tagged individuals can rarely be monitored directly. One of the most commonly reported measures of impact is breeding success, but this ignores potential short-term alterations to individual behaviour. When collecting ecological or behavioural data, such changes can have important consequences for the inference of results. Here, we take a multifaceted approach to investigate whether tagging leads to short-term behavioural changes, and whether these are later reflected in breeding performance, in a pelagic seabird. We analyse a long-term dataset of tracking data from Manx shearwaters (Puffinus puffinus), comparing the effects of carrying no device, small geolocator (GLS) devices (0.6% body mass), large Global Positioning System (GPS) devices (4.2% body mass) and a combination of the two (4.8% body mass). Despite exhibiting normal breeding success in both the year of tagging and the following year, incubating birds carrying GPS devices altered their foraging behaviour compared to untagged birds. During their foraging trips, GPS-tagged birds doubled their time away from the nest, experienced reduced foraging gains (64% reduction in mass gained per day) and reduced flight time by 14%. These findings demonstrate that the perceived impacts of device deployment depends on the scale over which they are sought long-term measures, such as breeding success, can obscure finer-scale behavioural change, potentially limiting the validity of using GPS to infer at-sea behaviour when answering behavioural or ecological questions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comportamento Animal / Aves / Tecnologia de Sensoriamento Remoto Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comportamento Animal / Aves / Tecnologia de Sensoriamento Remoto Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido
...