Your browser doesn't support javascript.
loading
p-Aminophenylalanine Involved in the Biosynthesis of Antitumor Dnacin B1 for Quinone Moiety Formation.
Hu, Xiaojing; Li, Xing; Sheng, Yong; Wang, Hengyu; Li, Xiaobin; Ou, Yixin; Deng, Zixin; Bai, Linquan; Kang, Qianjin.
Afiliação
  • Hu X; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Li X; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Sheng Y; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Wang H; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Li X; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Ou Y; Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China.
  • Deng Z; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Bai L; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Kang Q; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
Molecules ; 25(18)2020 Sep 12.
Article em En | MEDLINE | ID: mdl-32932689
ABSTRACT
Actinosynnema species produce diverse natural products with important biological activities, which represent an important resource of antibiotic discovery. Advances in genome sequencing and bioinformatics tools have accelerated the exploration of the biosynthetic gene clusters (BGCs) encoding natural products. Herein, the completed BGCs of dnacin B1 were first discovered in two Actinosynnema pretiosum subsp. auranticum strains DSM 44131T (hereafter abbreviated as strain DSM 44131T) and X47 by comparative genome mining strategy. The BGC for dnacin B1 contains 41 ORFs and spans a 66.9 kb DNA region in strain DSM 44131T. Its involvement in dnacin B1 biosynthesis was identified through the deletion of a 9.7 kb region. Based on the functional gene analysis, we proposed the biosynthetic pathway for dnacin B1. Moreover, p-amino-phenylalanine (PAPA) unit was found to be the dnacin B1 precursor for the quinone moiety formation, and this was confirmed by heterologous expression of dinV, dinE and dinF in Escherichia coli. Furthermore, nine potential PAPA aminotransferases (APAT) from the genome of strain DSM 44131T were explored and expressed. Biochemical evaluation of their amino group transformation ability was carried out with p-amino-phenylpyruvic acid (PAPP) or PAPA as the substrate for the final product formation. Two of those, APAT4 and APAT9, displayed intriguing aminotransferase ability for the formation of PAPA. The proposed dnacin B1 biosynthetic machinery and PAPA biosynthetic investigations not only enriched the knowledge of tetrahydroisoquinoline (THIQ) biosynthesis, but also provided PAPA building blocks to generate their structurally unique homologues.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenilalanina / Quinonas / Antineoplásicos Limite: Humans Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenilalanina / Quinonas / Antineoplásicos Limite: Humans Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China