Evaluation of Image Quality for 7 Iterative Reconstruction Algorithms in Chest Computed Tomography Imaging: A Phantom Study.
J Comput Assist Tomogr
; 44(5): 673-680, 2020.
Article
em En
| MEDLINE
| ID: mdl-32936576
OBJECTIVES: This study aimed to evaluate the image quality of 7 iterative reconstruction (IR) algorithms in comparison to filtered back-projection (FBP) algorithm. METHODS: An anthropomorphic chest phantom was scanned on 4 computed tomography scanners and reconstructed with FBP and IR algorithms. Image quality of anatomical details-large/medium-sized pulmonary vessels, small pulmonary vessels, thoracic wall, and small and large lesions-was scored. Furthermore, general impression of noise, image contrast, and artifacts were evaluated. Visual grading regression was used to analyze the data. Standard deviations were measured, and the noise power spectrum was calculated. RESULTS: Iterative reconstruction algorithms showed significantly better results when compared with FBP for these criteria (regression coefficients/P values in parentheses): vessels (FIRST: -1.8/0.05, AIDR Enhanced: <-2.3/0.01, Veo: <-0.1/0.03, ADMIRE: <-2.1/0.04), lesions (FIRST: <-2.6/0.01, AIDR Enhanced: <-1.9/0.03, IMR1: <-2.7/0.01, Veo: <-2.4/0.02, ADMIRE: -2.3/0.02), image noise (FIRST: <-3.2/0.004, AIDR Enhanced: <-3.5/0.002, IMR1: <-6.1/0.001, iDose: <-2.3/0.02, Veo: <-3.4/0.002, ADMIRE: <-3.5/0.02), image contrast (FIRST: -2.3/0.01, AIDR Enhanced: -2.5/0.01, IMR1: -3.7/0.001, iDose: -2.1/0.02), and artifacts (FIRST: <-3.8/0.004, AIDR Enhanced: <-2.7/0.02, IMR1: <-2.6/0.02, iDose: -2.1/0.04, Veo: -2.6/0.02). The iDose algorithm was the only IR algorithm that maintained the noise frequencies. CONCLUSIONS: Iterative reconstruction algorithms performed differently on all evaluated criteria, showing the importance of careful implementation of algorithms for diagnostic purposes.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Processamento de Imagem Assistida por Computador
/
Radiografia Torácica
/
Tomografia Computadorizada por Raios X
/
Imagens de Fantasmas
Idioma:
En
Revista:
J Comput Assist Tomogr
Ano de publicação:
2020
Tipo de documento:
Article
País de publicação:
Estados Unidos